
Introduction Native R Tips Finding Bottlenecks Calling C from R

Beware Data Frames -vs- Matrices

Tip 1
Writes to data frames are slow

for(i in 1:10000) { x[i,1] = 1 }

• Where x is a data frame: 3.5 sec
• Where x is a matrix: 0.04 sec

for(i in 1:10000) { x$V1[i] = 1 }

• Where x is a data frame: 3.5 sec

Introduction Native R Tips Finding Bottlenecks Calling C from R

Beware Data Frames -vs- Matrices

Tip 2
When reading data frames, don’t implicitly cast them to
matrices.

for(i in 1:10000) { a = x[i,1] }

• Where x is a data frame: 0.7 sec
• Where x is a matrix: 0.02 sec

for(i in 1:10000) { a = x$V1[i] }

• Where x is a data frame: 0.05 sec

Introduction Native R Tips Finding Bottlenecks Calling C from R

Efficient Memory Allocation

Tip 3
Pre-allocate all the memory you will use: don’t expand
vectors/matrices/data frames on the fly

x = NULL
for(i in 1:10000) { x = rbind(x, rnorm(20)) }
x = NULL
for(i in 1:10000) { x[i] = rnorm(1) } }

• 16.3 sec / 0.4 sec

x = matrix(nrow=10000,ncol=20)
for(i in 1:10000) { x[i,] = rnorm(20) }
x = vector("numeric", 10000)
system.time({ for(i in 1:10000) { x[i] = rnorm(1) } })

• 0.1 sec / 0.09 sec
0 50000 100000 150000 200000

0
50

10
0

15
0

20
0

Iterations

Ti
m

e
(s

ec
)

Introduction Native R Tips Finding Bottlenecks Calling C from R

Vectorize!

Tip 4
Ruthlessly Vectorize everything possible – for loops are evil!

x = seq(-6, 6, length.out=1e5)
area = 0
for(i in 2:1e5) { area = area+dnorm(x[i])*(x[i]-x[i-1]) }

• 0.63 sec

sum((x[2:100000]-x[1:99999])*dnorm(x[2:100000]))

• 0.02 sec

Introduction Native R Tips Finding Bottlenecks Calling C from R

Optimised Basic Linear Algebra Subprograms (BLAS)

Tip 5 (Linux/Windows only)

Use a proper BLAS library for your architecture.

See cran.r-project.org/bin/windows/contrib/ATLAS as a
starting point, though it often lags behind.

Find the bin subdirectory of your R installation and, after
backing up the existing copy, replace the file Rblas.so
(Linux)/Rblas.dll (Windows)

For example, squaring a 1000× 1000 matrix takes 3 times
longer on the default BLAS that comes with R compared to an
optimized BLAS.

All matrix operations will be faster “for free”: inversion, SVD,
QR, Choleski, ...

Introduction Native R Tips Finding Bottlenecks Calling C from R

Full Example - 2D Random Walk

Version A
rand_walk_A = function(n) {

walk = data.frame(x = c(0), y = c(0))
for(i in 2:n) {

if(sample(c(TRUE, FALSE), 1)) {
walk[i,1] = walk[i-1,1] + sample(c(-1,1), 1)
walk[i,2] = walk[i-1,2]

} else {
walk[i,1] = walk[i-1,1]
walk[i,2] = walk[i-1,2] + sample(c(-1,1), 1)

}
}
walk

}

Execution Time (10,000 steps): 28.0 secs

Introduction Native R Tips Finding Bottlenecks Calling C from R

Full Example - 2D Random Walk

Version B - eliminate data frames
rand_walk_B = function(n) {

x = 0; y = 0
for(i in 2:n) {

if(sample(c(TRUE, FALSE), 1)) {
x[i] = x[i-1] + sample(c(-1,1), 1)
y[i] = y[i-1]

} else {
x[i] = x[i-1]
y[i] = y[i-1] + sample(c(-1,1), 1)

}
}
list(x=x, y=y)

}

Execution Time (10,000 steps): 1.8 secs

http://www.tcd.ie/
http://www.tcd.ie/
http://www.tcd.ie/
http://www.tcd.ie/
http://www.tcd.ie/
http://cran.r-project.org/bin/windows/contrib/ATLAS/
http://www.tcd.ie/
http://www.tcd.ie/

Introduction Native R Tips Finding Bottlenecks Calling C from R

Full Example - 2D Random Walk

Version C - eliminate dynamically expanded memory
rand_walk_C = function(n) {

x = vector("numeric", n); y = vector("numeric", n)
for(i in 2:n) {

if(sample(c(TRUE, FALSE), 1)) {
x[i] = x[i-1] + sample(c(-1,1), 1)
y[i] = y[i-1]

} else {
x[i] = x[i-1]
y[i] = y[i-1] + sample(c(-1,1), 1)

}
}
list(x=x, y=y)

}

Execution Time (10,000 steps): 0.3 secs

Introduction Native R Tips Finding Bottlenecks Calling C from R

Full Example - 2D Random Walk

Version D - fully vectorize
rand_walk_D = function(n) {

move = sample(1:4, n-1, replace=TRUE)
x = c(0, cumsum(c(-1,1,0,0)[move]))
y = c(0, cumsum(c(0,0,-1,1)[move]))
list(x=x, y=y)

}

Execution Time (10,000 steps): 0.002 secs

A B C D

Version

E
xe

cu
tio

n
Ti

m
e

(s
ec

s)

0
5

10
15

20
25

14,000x slower

Introduction Native R Tips Finding Bottlenecks Calling C from R

Full Example - 2D Random Walk

Can we go even faster without resorting to C?

Version E - forked processes (Extra tip for Mac OS X & Linux)

rand_walk_E = function(n) {
move = sample(1:4, n-1, replace=TRUE)
a = parallel(

parse(text="c(0, cumsum(c(-1,1,0,0)[move]))"),
"x")

b = parallel(
parse(text="c(0, cumsum(c(0,0,-1,1)[move]))"),
"y", TRUE)

collect(list(a, b))
}

Here actually much slower ... forking only benefits if:
(a) slow running; and (b) small return size

Introduction Native R Tips Finding Bottlenecks Calling C from R

Identifying Bottlenecks : system.time

For simple speed comparisons just use system.time().

Tip: if you want to time a complex expression, just wrap in { }

system.time(dnorm(2); dnorm(3))
system.time(dnorm(2)
dnorm(3))

Both give syntax error, instead:

system.time({dnorm(2); dnorm(3)})

Also, output of system.time gives user/system/elapsed times.
If system is a large percentage of elapsed time this indicates
heavy OS management and possibly wasteful memory accesses.

Introduction Native R Tips Finding Bottlenecks Calling C from R

Identifying Bottlenecks : Rprof

system.time() is very limited, so better to do code profiling to
identify what’s slowing you down.

Rprof - built-in profiling of R code
Rprof()
a = rand_walk_A(10000)
Rprof(NULL)
summaryRprof()

$by.self
self.time self.pct

"[<-.data.frame" 8.72 31.6
"xpdrows.data.frame" 8.64 31.3
"rand_walk_A" 5.12 18.6
"length<-" 1.78 6.5

NB: help("[<-.data.frame") not ?[<-.data.frame etc

Introduction Native R Tips Finding Bottlenecks Calling C from R

Identifying Bottlenecks : Advanced Memory Options

Rprof would have helped spot the issues raised in tips 1, 2, 4
and 5. Identifying the slowdown caused by massive memory
copying may be harder to spot.

There are two options:
• gctorture()
Rprof(memory.profiling=TRUE)
[...]
Rprof(NULL)
gctorture(on=FALSE)
summaryRprof(memory="both")
summaryRprof(memory="tseries")
summaryRprof(memory="stats")

• tracemem(myvar)
[...]
untracemem(myvar)

Introduction Native R Tips Finding Bottlenecks Calling C from R

Getting Setup

What you’ll need when resorting to C:

• R, obviously (www.r-project.org)
• Mac OS X: XCode (included on system DVD)
• Linux: GCC and other compiler tools (included in most

repositories, e.g. build-essential & r-base-dev on
Debian/Ubuntu)

• Windows: Rtools (www.murdoch-sutherland.com/Rtools)

http://www.tcd.ie/
http://www.tcd.ie/
http://www.tcd.ie/
http://www.tcd.ie/
http://www.tcd.ie/
http://www.tcd.ie/
http://www.tcd.ie/
http://www.r-project.org/
http://www.murdoch-sutherland.com/Rtools/

Introduction Native R Tips Finding Bottlenecks Calling C from R

Calling Into C Code

There are two methods:
1 .C

• R types are coerced to C types
• C side of the coin needs no special knowledge of R internals
• Easy and fast to code
• Can even interface to existing libraries that weren’t written

for R
2 .Call

• Gives C level access directly to R types
• Requires learning internal R storage types and memory

allocation
• Much harder and places more responsibility on coder
• Useful if need to manipulate/create native R objects and

types which have no natural C analogue

Introduction Native R Tips Finding Bottlenecks Calling C from R

.C -vs- .Call

Technically, .Call has certain advantages over .C

• Less copying of arguments
• Ability to dynamically dimension results in C
• Access to R data types and easier ability to execute R code

from C (i.e. reverse)
• Ability to handle NAs etc

But, if these aren’t going to be issues then .C may be a lot less
headache.

Only time to cover .C today, but once that’s mastered,
documentation for .Call straightforward.

Introduction Native R Tips Finding Bottlenecks Calling C from R

.C - The Basics - “Hello world!” Example

Starting off in C:

helloworld.c
#include <R.h>

void helloworld() {
Rprintf("Hello world!\n");

}

Then, from the command line when in the directory containing
helloworld.c

Command Line
R CMD SHLIB helloworld.c

Which will create the file helloworld.so (Mac/Linux) or
helloworld.dll (Windows)

Introduction Native R Tips Finding Bottlenecks Calling C from R

.C - The Basics - “Hello world!” Example

Then in R,

R
> dyn.load("/path/to/helloworld.so")
> x = .C("helloworld")
Hello world!

Introduction Native R Tips Finding Bottlenecks Calling C from R

.C - The Basics - Simple Example

Starting off in C:

addnums.c
#include <R.h>

void addnums(double *a, double *b, double *res) {
*res = *a + *b;

}

Then, from the command line when in the directory containing
helloworld.c

Command Line
R CMD SHLIB addnums.c

Which will create the file addnums.so (Mac/Linux) or
addnums.dll (Windows)

Introduction Native R Tips Finding Bottlenecks Calling C from R

.C - The Basics - Simple Example

R
> dyn.load("/path/to/addnums.so")
> n = 3.141
> m = 2.718
> x = .C("addnums", as.double(n), as.double(m),

as.double(0))
> x
[[1]]
[1] 3.141

[[2]]
[1] 2.718

[[3]]
[1] 5.859

Introduction Native R Tips Finding Bottlenecks Calling C from R

.C - The Basics - Simple Example

R
> dyn.load("/path/to/addnums.so")
> n = 3.141
> m = 2.718
> x = .C("addnums", a=as.double(n), b=as.double(m),

res=as.double(0))
> x$a
[1] 3.141
> x$res
[1] 5.859

Introduction Native R Tips Finding Bottlenecks Calling C from R

.C - The Basics - Summary

• Your C function must have no return value (void) and all
arguments passed as pointers

• include R.h for access to various R functions
• use Rprintf(), not printf() for output

• Compile using R CMD SHLIB file.c

• Load the resulting shared library in R with dyn.load()

• Call the C function using .C
• first argument is string containing C function name
• subsequent arguments are the ordered list of arguments to

the C function (no name matching occurs)
• explicitly cast all these R variables to the correct C type

(as.double(), as.integer(), as.character())
• you will be returned a list with item names matching the

argument names you passed in
• the returned items will be copies – although C is passed

pointers you can’t overwrite anything in the R environment

http://www.tcd.ie/
http://www.tcd.ie/
http://www.tcd.ie/
http://www.tcd.ie/
http://www.tcd.ie/
http://www.tcd.ie/
http://www.tcd.ie/
http://www.tcd.ie/

Introduction Native R Tips Finding Bottlenecks Calling C from R

.C - Vectors/Matrices

Vectors and matrices require care:
• cast to double – will be flat 1D arrays in C
• pass the dimension of the vector/matrix explicitly!
• matrices are stored column-wise (quite standard in C) and

the default for matrix() function in R
• the return will likewise be a flat array which must be

re-formed into a matrix

sqmatmul

See handout lines ???

R
See handout lines ???

Don’t do this!! Will return to BLAS/LAPACK soon

Introduction Native R Tips Finding Bottlenecks Calling C from R

.C - Distributions & Random Number Generation

To access the distribution calculations and random number
generators available in R is a straight-forward C call.

The procedure is:
• include the header file Rmath.h

• before the first generation of a random number, call
GetRNGstate();

• to find function, see page 106 in “Writing R Extensions”.
Note:

• all arguments are double (even df etc)
• there is no n for random number generation

• make appropriate calls in C
• after all random number generation and before function

exits, call PutRNGstate();

Introduction Native R Tips Finding Bottlenecks Calling C from R

.C - Distributions & Random Number Generation

Revisit the 2D random walk

2drw

See handout lines ???

R
See handout lines ???

Aside: when we increase the number of steps to 1,000,000 we
find the fastest native R version earlier takes 0.3 sec and this C
version takes 0.15 sec.

Introduction Native R Tips Finding Bottlenecks Calling C from R

.C - Using BLAS/LAPACK

Don’t implement any vector/matrix algebra if you don’t have
to: rely on BLAS & LAPACK.
Defy anyone to beat it in 99.9% of general cases!

References:
• BLAS Quick Reference (www.netlib.org/blas/blasqr.pdf)
• BLAS website (www.netlib.org/blas)
• R_ext/BLAS.h and R_ext/Lapack.h

• LAPACK website (www.netlib.org/lapack and
www.netlib.org/lapack/double for example)

Usage:
• Include <R_ext/BLAS.h> and <R_ext/Lapack.h> in your C
• Lookup required function
• Call by wrapping Fortran call, e.g.:
F77_CALL(dgeevx)(...);

Introduction Native R Tips Finding Bottlenecks Calling C from R

.C - Using BLAS/LAPACK

Beware! Everything is passed as pointers and some
BLAS/LAPACK routines will change your data. However,
behaviour is very well documented.

linmod

See handout lines ???

R
See handout lines ???

Introduction Native R Tips Finding Bottlenecks Calling C from R

.C - Miscellaneous Extras

Arguably the most useful 6 pages of the “Writing R
Extensions” manual are pages 106-112. Cover the stable APIs
for such things as:
• Mathematical functions (§6.7.2, p.107)

• gamma, di/tri/tetra/... gamma functions
• beta function
• nCk, nPk

• bessel functions
• Numerical Utilities (§6.7.3, p.107-8)

• efficient powers (recall, no x^n in C!)
• accurate log(1 + x), log(1 + x)− x, ex − 1, . . . for |x| � 1
• and more

• Mathematical Constants (§6.7.4, p.108-9) to 30 decimal
places π, π

2 ,
1
π ,
√
π, e, . . .

• Optimization (§6.8, p.109-10) for direct C-level access to
optim for Nelder Mead, BFGS, simulated annealing, . . .

Introduction Native R Tips Finding Bottlenecks Calling C from R

.C - Miscellaneous Extras

• Integration (§6.9, p.110-11) for direct C-level access to
finite and infinite support integrals by quadrature

• Utility functions (§6.10, p.111-12)
• extensive sorting and searching
• temporary file functions
• and more

Last ‘extra’ comment: you’ll find hitting the Esc key won’t
interrupt anything running in C the way it does for things
running in native R.

To overcome this annoyance, include the header
<R_ext/Utils.h> and periodically call
R_CheckUserInterrupt(); at safe/suitable places in your code.

Introduction Native R Tips Finding Bottlenecks Calling C from R

Going Even Faster – The Future

The current trend for extra speed is looking towards GPUs.

This means learning a new programming paradigm:
• NVIDIA CUDA (www.nvidia.com/cuda)
• ATI Stream (www.amd.com/stream)
• OpenCL (www.khronos.org/opencl and

www.apple.com/macosx/technology)

Even this 3 year old MacBook Pro has 32 475MHz graphics
cores =⇒ theoretical 15GHz untapped processing power.

The current MacBook Pro has 48 1265MHz graphics cores =⇒
theoretical 60GHz untapped processing power.

Current best desktop NVIDIA card has 480 700MHz graphics
cores =⇒ theoretical 336GHz untapped processing power.

http://www.tcd.ie/
http://www.tcd.ie/
http://www.tcd.ie/
http://www.tcd.ie/
http://www.netlib.org/blas/blasqr.pdf
http://www.netlib.org/blas/
http://www.netlib.org/lapack/
http://www.netlib.org/lapack/double/
http://www.tcd.ie/
http://www.tcd.ie/
http://www.tcd.ie/
http://www.tcd.ie/
http://www.nvidia.com/cuda/
http://www.amd.com/stream/
http://www.khronos.org/opencl/
http://www.apple.com/macosx/technology/

	Introduction
	Native R Tips
	Finding Bottlenecks
	Calling C from R

