
GPU Programming Basics: Getting Started

Louis JM Aslett

Department of Statistics, Trinity College, University of Dublin

7 February 2011

Introduction GPUs CUDA Concepts Simple Example 3 Performance Tips

Goals of Talk

Extend the talk of May 2010 to include:

• High-level GPU overview

• Introduction to nVidia’s Compute Unified Device
Architecture (CUDA)

• Writing GPU kernels in C

• Compiling and using GPU code with R

• Using the Amazon Cloud

Introduction GPUs CUDA Concepts Simple Example 3 Performance Tips

But first ...

It’s possible to use the GPU without learning anything new,
and the options are getting better all the time:
• gputools – an R package which does dense matrix

multiplication, linear model fits etc using CUDA enabled
GPUs

• cuBLAS – a standard C library written by nVidia to do
basic linear algebra on the GPU (upto 10× faster than
MKL)

• cuSPARSE – a standard C library written by nVidia to do
sparse matrix linear algebra on the GPU (upto 32× faster
than MKL)

• cuRAND – a standard C library written by nVidia to do
large scale random number generation (upto 16 billion
random values generated per sec)

Introduction GPUs CUDA Concepts Simple Example 3 Performance Tips

But first ...

Since Amazon Cloud also a focus of the talk, special mention
for segue.

Segue (http://code.google.com/p/segue/, not on CRAN yet) is
only a month or so old as a project, but enables parallel
processing on Amazon nodes in a few lines of R code, eg:

> library(segue)
> setCredentials(’ACCESS_KEY_ID’, ’SECRET_ACCESS_KEY’)
> myCluster <- createCluster(numInstances=10)
> res <- emrlapply(myCluster, myList, myFunc, na.rm=T)

Very cool – highly recommend checking out!

Introduction GPUs CUDA Concepts Simple Example 3 Performance Tips

As usual ...

The mantra recommended last May can be extended:

Statistical Programming Mantra
R when you can

• Exhaust the 5 tips (data frame write/read issues,
pre-allocate memory, vectorize, BLAS)

• Identify bottlenecks (system.time, Rprof)
C when you must

• Drop into C selectively (.C, .Call)
Low-level parallelize when you must (and can)!

• Brute force massive parallelism (CUDA, ATI Stream,
OpenCL, PThreads, OpenMP, MPI, Map Reduce, etc)

Introduction GPUs CUDA Concepts Simple Example 3 Performance Tips

Highly Simplified GPU Architecture

Device

Multiprocessor

} c
o
r
e
s

16K Shared Memory

Multiprocessor

} c
o
r
e
s

16K Shared Memory

Multiprocessor

} c
o
r
e
s

16K Shared Memory

Multiprocessor

} c
o
r
e
s

16K Shared Memory

256MB Global Memory

nVidia GeForce 8600M GT

Device

Multiprocessor

} c
o
r
e
s

48K Shared Memory

Multiprocessor

} c
o
r
e
s

48K Shared Memory

Multiprocessor

} c
o
r
e
s

48K Shared Memory

Multiprocessor

} c
o
r
e
s

48K Shared Memory

Multiprocessor

} c
o
r
e
s

48K Shared Memory

Multiprocessor

} c
o
r
e
s

48K Shared Memory

Multiprocessor

} c
o
r
e
s

48K Shared Memory

Multiprocessor

} c
o
r
e
s

48K Shared Memory

Multiprocessor

} c
o
r
e
s

48K Shared Memory

Multiprocessor

} c
o
r
e
s

48K Shared Memory

Multiprocessor

} c
o
r
e
s

48K Shared Memory

Multiprocessor

} c
o
r
e
s

48K Shared Memory

Multiprocessor

} c
o
r
e
s

48K Shared Memory

Multiprocessor

} c
o
r
e
s

48K Shared Memory

3GB Global memory

nVidia Tesla C2050

Introduction GPUs CUDA Concepts Simple Example 3 Performance Tips

CUDA Concepts and Terminology

• Kernel: a C function which is flagged to be run on a
CUDA capable device

• A kernel is executed on the core of a multiprocessor inside
a thread. A thread can be thought of as just an index
j ∈ N. V Loosely: a index of cores in multiprocessors

• At any given time, a block of threads is executed on a
multiprocessor. A block can be thought of as just an index
i ∈ N. V Loosely: an index of multiprocessors in devices

• Together, (i, j) corresponds to exactly one kernel running
on a core of a single multiprocessor.

i.e. Very simplistically speaking, think of how to parallelize
your problem by how to split it into identical chunks indexed by
a pair (i, j) ∈ N× N

http://www.tcd.ie/
http://www.tcd.ie/
http://www.tcd.ie/
http://www.tcd.ie/
http://code.google.com/p/segue/
http://www.tcd.ie/
http://www.tcd.ie/
http://www.tcd.ie/

Introduction GPUs CUDA Concepts Simple Example 3 Performance Tips

What the heck does that mean!?

Imagine you want to parallelize a for loop:

for(int i=0; i<1000; i++) { a=x[i]; }

In block/thread speak you could have a single block/1000
thread (i = 0, j = 0 . . . 999) kernel containing (pseudo-code):

a=x[thread_index];

The exact same kernel is called blocks × threads times with the
block and thread indices changing.
Or, to make use of more than one multiprocessor, say
i = 0 . . . 19, j = 0 . . . 49 and kernel:

a=x[block_index*50+thread_index];

Block 0 Block 1 Block 2 Block 3
CUDA Program

2 Multiprocessor GPU

Block 0

Multiprocessor 1

Block 2

Block 1

Block 3

Multiprocessor 2Threads

Core 1 Core 2 Core 3 Core 4
Multiprocessor 1 (4 core)

a=x[0*50+0]

a=x[1*50+2]

Introduction GPUs CUDA Concepts Simple Example 3 Performance Tips

Rules

• There is a cap on the maximum number of blocks and
threads (though both can – and should – exceed the
physical number of multiprocessors and cores)

• Can’t assume threads will complete in the order you index
them.

• Can’t assume blocks will complete in the order you index
them.

• To deal with execution order dependency either:
• run dependent items in the same block (syncthreads(),

beyond talk scope)
• split into kernels which you call consecutively from C

• Don’t write to the same memory location from different
threads (proviso: shared memory, beyond talk scope)

Introduction GPUs CUDA Concepts Simple Example 3 Performance Tips

First example: Add two vectors a,b ∈ R1000

Kernel Code
__global__ void VecAdd(float* a, float* b, float* c) {

int j = threadIdx.x;
c[j] = a[j] + b[j];

}

Called from your standard C code by:
VecAdd<<<1, 1000>>>(a, b, c);

Number of blocks Number of threads
So this executes on a single multiprocessor with 1000 threads
automatically scheduled over the 8 (laptop) or 32 (Tesla) cores.

Introduction GPUs CUDA Concepts Simple Example 3 Performance Tips

Clearly a massive waste, so easily adapt to run over many
multiprocessors:

Kernel Code
__global__ void VecAdd(float* a, float* b, float* c) {

int k = blockIdx.x * 50 + threadIdx.x;
c[k] = a[k] + b[k];

}

Called from your standard C code by:

VecAdd<<<20,50>>>(a, b, c);

So this queues 20 blocks over all multiprocessors with each
block having 50 threads automatically scheduled over the cores.

Introduction GPUs CUDA Concepts Simple Example 3 Performance Tips

But, the GPU cannot access system memory, so there is some
setup to do before the VecAdd call. The full code to call from R:

Host Code
void VecAddR(float* a, float* b, float* c) {

float *a_GPU, *b_GPU, *c_GPU;

cudaMalloc(&a_GPU, 1000*sizeof(float));
cudaMalloc(&b_GPU, 1000*sizeof(float));
cudaMalloc(&c_GPU, 1000*sizeof(float));

cudaMemcpy(a_GPU, a, 1000*sizeof(float),
cudaMemcpyHostToDevice);

cudaMemcpy(b_GPU, b, 1000*sizeof(float),
cudaMemcpyHostToDevice);

VecAdd<<<20,50>>>(a_GPU, b_GPU, c_GPU);

Introduction GPUs CUDA Concepts Simple Example 3 Performance Tips

Host Code (ctd.)

cudaThreadSynchronize();

cudaMemcpy(c, c_GPU, 1000*sizeof(float),
cudaMemcpyDeviceToHost);

cudaFree(a_GPU);
cudaFree(b_GPU);
cudaFree(c_GPU);

}

Note that if you are compiling kernel and host code in one file,
the host code must be wrapped in extern "C" { ... } and
the file should have a .cu extension rather than .c

See handout for full details and how to compile for use in R.

LOCAL DEMO & AMAZON DEMO

Introduction GPUs CUDA Concepts Simple Example 3 Performance Tips

Performance Tips

• Can get surprisingly good results even ignoring
performance considerations and just making sure:
blocks > # multiprocessors
and
threads > # cores per multiprocessor.

• This makes GPU programming very attractive ... if you
can translate problem to independent double for loop, then
you can almost blindly GPU-ize and likely win.

• However, even more massive gains on non-trivial problems
with some understanding of performance tuning. Three
simple to understand things can make a massive difference
...

http://www.tcd.ie/
http://www.tcd.ie/
http://www.tcd.ie/
http://www.tcd.ie/
http://www.tcd.ie/
http://www.tcd.ie/
http://www.tcd.ie/

Introduction GPUs CUDA Concepts Simple Example 3 Performance Tips

Simple Performance Tip #1

Recall:
• Number of blocks can exceed number of multiprocessors
• Number of threads can exceed number of cores per

multiprocessor
Worst case, at least both should equal the physical device sizes
or else cores sit idle.

But in reality, ensure the thread figure exceeds the
number of cores per multiprocessor for performance
reasons.

nVidia provide an ‘occupancy calculator’ in the form of an
Excel spreadsheet which allows you to tune how many threads
to choose for any given problem.

= Global memory access
=> Execution stall!

Global memory accesses are slow,
so a core will stall when a request is
made.

But, if # threads > # cores then
another thread will be interleaved
and run until the memory request is
fulfilled and the first thread can run
again.

Thread A Thread B Thread C

Introduction GPUs CUDA Concepts Simple Example 3 Performance Tips

Simple Performance Tip #2

Cores1 2 3 4 5 6 7 8

if(x[thrd_id]>0) {

...

...

} else {

...

}

T T F T F F T F

Threads execute in lock-step on the cores of a
multiprocessor, so beware of very divergent code ... best
to use block indices to separate highly divergent paths.

Introduction GPUs CUDA Concepts Simple Example 3 Performance Tips

Simple Performance Tip #3

The multiprocessors are able to pull in ranges of memory in
large blocks rather than element by element as each core
requires it (note also, due to the lock-step all cores will be ready
for memory access at the same time).

Hence, the multiprocessor will try to ‘coalesce’ the memory
requests. It can only do this if each thread accesses
consecutive bytes in memory which are aligned with
the memory stride.

Simplistically speaking: a[blk*n+thr] is fast; a[thr*n+blk] is
slow!

Full answer: it is worth looking up cudaMallocPitch and
cudaMemcpy2D.

Happy coding!

http://www.tcd.ie/
http://www.tcd.ie/
http://www.tcd.ie/

	Introduction
	GPUs
	CUDA Concepts
	Simple Example
	3 Performance Tips

