GPU Programming Basics: Getting Started

Louis JM Aslett

Department of Statistics, Trinity College, University of Dublin

7 February 2011

Trinity
College
7 Dublin

Introduction

But first ...

Introduction

Goals of Talk

Extend the talk of May 2010 to include:

e High-level GPU overview

o Introduction to nVidia’s Compute Unified Device
Architecture (CUDA)

e Writing GPU kernels in C
e Compiling and using GPU code with R

e Using the Amazon Cloud

Trinity
College
7 Dublin

Introduction

But first ...

It’s possible to use the GPU without learning anything new,
and the options are getting better all the time:

e gputools — an R package which does dense matrix
multiplication, linear model fits etc using CUDA enabled
GPUs
cuBLAS — a standard C library written by nVidia to do
basic linear algebra on the GPU (upto 10x faster than
MKL)
cuSPARSE — a standard C library written by nVidia to do
sparse matrix linear algebra on the GPU (upto 32x faster
than MKL)

e cuRAND - a standard C library written by nVidia to do
large scale random number generation (upto 16 billion
random values generated per sec)

Trinity
College
Dublin

Introduction

As usual ...

Since Amazon Cloud also a focus of the talk, special mention
for segue.

Segue (http://code.google.com/p/segue/, not on CRAN yet) is
only a month or so old as a project, but enables parallel
processing on Amazon nodes in a few lines of R code, eg:

> library(segue)
> setCredentials(’ACCESS_KEY_ID’, ’SECRET_ACCESS_KEY’)
> myCluster <- createCluster(numInstances=10)

> res <- emrlapply(myCluster, myList, myFunc, na.rm=T)

Very cool — highly recommend checking out!

Trinity
College
7 Dublin

GPUs

Highly Simplified GPU Architecture

The mantra recommended last May can be extended:

Statistical Programming Mantra

R when you can

o Exhaust the 5 tips (data frame write/read issues,
pre-allocate memory, vectorize, BLAS)

o Identify bottlenecks (system.time, Rprof)
C when you must
e Drop into C selectively (.C, .Call)
Low-level parallelize when you must (and can)!

e Brute force massive parallelism (CUDA, ATI Stream,
OpenCL, PThreads, OpenMP, MPI, Map Reduce, etc)

Dublin

[EEEHR

[T Sty | | | [Shared v
L | L

[EEnn)
[EEEn)
[)
LT
mo¥on

oo L o

masssnsafgllaanaannafgl

oo 004 ¢ | DOoooOH N
] [

[
[e
L

3GB Global memq

N N Mo Ty

B EEEEEEEQ}? EEEEEEEQ}?
D‘ { D‘ {
1 1
| |

e I
Ooo00o004 +| | OOOOCOO; *| | DOCOOOO
Fmn| || ||
[

[Muliprocessor Multiprocessor Multiprocessor
00000000y ¢ | 00000000y ¢
OO000000 by DDDDE\:‘Da}?

]
|
|

Renansne/kllasanane

[] [

[K Shared Memory | | | [35K Shared Memory
L | L

[Multiprocessor

oy
_Testa

—— | E—
K Shared Mermory K Shared Mermory

nVidia Tesla C2050

Device

Multiprocessor

OO00Ns
EEEELg

Multiprocessor

00000
OoggJs:

[16K Shared Memory]

[16K Shared Memory]

Multiprocessor

D000V
EEEELg

Multiprocessor

OO00Ns
EEEELg

[16K Shared Memory]

[16K Shared Memory]

256MB Global Memory

nVidia GeForce 8600M GT

Trinity
College
7 Dublin

CUDA Concepts

CUDA Concepts and Terminology

e Kernel: a C function which is flagged to be run on a
CUDA capable device

A kernel is executed on the core of a multiprocessor inside
a thread. A thread can be thought of as just an index

j € N. V Loosely: a index of cores in multiprocessors

At any given time, a block of threads is executed on a
multiprocessor. A block can be thought of as just an index
i € N. V Loosely: an index of multiprocessors in devices

Together, (i, j) corresponds to exactly one kernel running
on a core of a single multiprocessor.

i.e. Very simplistically speaking, think of how to parallelize
your problem by how to split it into identical chunks indexed by
a pair (i,j) € Nx N

Trinity
College
7 Dublin

http://www.tcd.ie/
http://www.tcd.ie/
http://www.tcd.ie/
http://www.tcd.ie/
http://code.google.com/p/segue/
http://www.tcd.ie/
http://www.tcd.ie/
http://www.tcd.ie/

CUDA Concepts

CUDA Program

Block 2 Block 3
T
I
I
|

What the heck does that mean!? Block 0

T e e
RN R I R | RN
AR QV«VHH} AR | IR
\AAAAAS 2 A RAAAAAAINARAAAAZINARAAAA]

A

Imagine you want to parallelize a for loop:

for(int i=0; i<1000; i++) { a=x[il; }

2 Multiprocessor GPU

In block/thread speak you could have a single block/1000 , Threads i ! i 2
thread (i = 0,7 = 0...999) kernel containing (pseudo-code): a="[‘3y’5°+°1 ok ek
a=x [thread_index] ; S — WA WA

A Block 2 Block 3
The exact same kernel is called blocks x threads times with the RERREE EREEE
block and thread indices changing. VWYYV [ARAARAS
Or, to make use of more than one multiprocessor, say -
i=0...19,7 = 0...49 and kernel: »

Multiprocessor 1 (4 core)
Corel Core2 Core3 Cored

a=x[block_index*50+thread_index] ; 0

CUDA Concepts Simple Example

ERIOOO

First example: Add two vectors a,b €

There is a cap on the maximum number of blocks and P o] (] e
Kernel Code

threads (though both can — and should — exceed the X
. . __global__ void VecAdd(float* a, float* b, floatx c) {
physical number of multiprocessors and cores) X ;
int j = threadIdx.x;

e Can’t assume threads will complete in the order you index c[j1 = aljl + bljl;
them. }

e Can’t assume blocks will complete in the order you index

them. Called from your standard C code by:

. . . VecAdd<<<1l, 1000>>>(a, b, c);
e To deal with execution order dependency either:

o run dependent items in the same block (__syncthreads(),
beyond talk scope)

o split into kernels which you call consecutively from C Number of blocks Number of threads

So this executes on a single multiprocessor with 1000 threads

e Don’t write to the same memory location from different
M automatically scheduled over the 8 (laptop) or 32 (Tesla) cores.

threads (proviso: shared memory, beyond talk scope)

Trinity Trinity
College College
Dublin Dublin

Clearly a massive waste, so easily adapt to run over many But, the GPU cannot access system memory, so there is some
multiprocessors: setup to do before the VecAdd call. The full code to call from R:
Kernel Code Host Code
__global__ void VecAdd(float* a, float* b, float* c) { void VecAddR(float* a, float* b, float* c) {

int k = blockIdx.x * 50 + threadIdx.x; float *a_GPU, *b_GPU, *c_GPU;

clk] = alk] + blk];
} cudaMalloc(&a_GPU, 1000*sizeof (float));

cudaMalloc(&b_GPU, 1000*sizeof (float));

alled f stands :
Called from your standard C code by cudalMalloc(&c_GPU, 1000*sizeof (float));

VecAdd<<<20,50>>>(a, b, c);
cudaMemcpy(a_GPU, a, 1000*sizeof (float),

So this queues 20 blocks over all multiprocessors with each cudaMemcpyHostToDevice) ;
block having 50 threads automatically scheduled over the cores. cudaMemcpy (b_GPU, b, 1000*sizeof (float),
cudaMemcpyHostToDevice) ;

VecAdd<<<20,50>>>(a_GPU, b_GPU, c_GPU);

Trinity
College
Dublin

Simple Example 3 Performance Tips

Performance Tips

Jode (ctd.)

cudaThreadSynchronize () ; L. R .
e Can get surprisingly good results even ignoring

cudaMemcpy (c, c_GPU, 1000%sizeof (float) performance considerations and just making sure:
- cudaNenepyDeviceToHost)); # blocks > # multiprocessors
and
cudaFree(a_GPU) ; # threads > # cores per multiprocessor.

cudaFree (b_GPU) ;
cudaFree (c_GPU) ; This makes GPU programming very attractive ... if you

3 can translate problem to independent double for loop, then
you can almost blindly GPU-ize and likely win.

Note that if you are compiling kernel and host code in one file,
the host code must be wrapped in extern "C" { ... } and

However, even more massive gains on non-trivial problems
the file should have a .cu extension rather than .c with some understanding of performance tuning. Three

. . . simple to understand things can make a massive difference
See handout for full details and how to compile for use in R.

College College
Dublin Dublin

E Trinity LOCAL DEMO & AMAZON DEMO a Trinity

http://www.tcd.ie/
http://www.tcd.ie/
http://www.tcd.ie/
http://www.tcd.ie/
http://www.tcd.ie/
http://www.tcd.ie/
http://www.tcd.ie/

3 Performance Tips

Simple Performance Tip #1 Thread A [Thread B [Thread C
* = Global memory access |
= i ! |
Recall: > Execution stall! :
e Number of blocks can exceed number of multiprocessors Global memory accesses are slow,
e Number of threads can exceed number of cores per so a core will stall when a request is :
multiprocessor made. :
Worst case, at least both should equal the physical device sizes
or else cores sit idle. But, if # threads > # cores then ,
another thread will be interleaved :
But in reality, ensure the thread figure exceeds the and run until the memory request is |
number of cores per multiprocessor for performance fulﬁlled and the first thread can run
reasons. again. '
1
nVidia provide an ‘occupancy calculator’ in the form of an :
Excel spreadsheet which allows you to tune how many threads
to choose for any given problem.

Trinity
College
7 Dublin

3 Performance Tips 3 Performance Tips

Simple Performance Tip #2 Simple Performance Tip #3

1 2 3 4 5 6 7 8 <— Cores
The multiprocessors are able to pull in ranges of memory in

I R SR B SN SRR O £ (x [thrd_1d]>0) | large blocks rather than element by element as each core
requires it (note also, due to the lock-step all cores will be ready
for memory access at the same time).

Hence, the multiprocessor will try to ‘coalesce’ the memory
requests. It can only do this if each thread accesses
consecutive bytes in memory which are aligned with
the memory stride.

} else {

} Simplistically speaking: a[blk*n+thr] is fast; a[thr*n+blk] is
slow!

Full answer: it is worth looking up cudaMallocPitch and

Threads execute in lock-step on the cores of a
cudaMemcpy2D.

. multiprocessor, so beware of very divergent code ... best o
rinity L. 4 N rinity
@ Btk to use block indices to separate highly divergent paths. E College.

Happy coding!

http://www.tcd.ie/
http://www.tcd.ie/
http://www.tcd.ie/

	Introduction
	GPUs
	CUDA Concepts
	Simple Example
	3 Performance Tips

