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This Section

• Baseline models

• Cut-off selection

• Binary metrics

• Calibration

• Learning curves

• Additional topics

• Super learners

Coming discussion rooted in binary classification, but much applies generally.
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Evaluating applied models

• Working in applied problems requires deep thought about the subject matter
problem

• Are you optimising for the right quantity?

• Don’t blindly examine accuracy!
• Especially accuracy with a default 0.5 cutoff!

• Beware advice to over/undersampe to rescue this often inappropriate metric!

• Do worry about calibration and where possible make probabilistic forecasts,
rather than raw labels alone
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Baseline models

Always include a very simple model in your analysis to act as a baseline.

eg. “featureless” model:

f̂j(x) =
{

1 if
∑

i∈Tr
1{yi = j} >

∑
i∈Tr

1{yi = k} ∀ k

0 otherwise

Or at least a standard logistic regression. You’ll be amazed how often it’s good
enough! (Christodoulou et al., 2019)

Baseline model can really save you from unwarrented excitement (eg accuracy)
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Cut-off selection

Under 0-1 loss, Bayes optimally:

g⋆(x) = arg max
j∈{0,1}

fj(x) =
{

0 if f1(x) < 0.5
1 if f1(x) ≥ 0.5

But, in general for other losses:

gf̂ (x) =
{

0 if f̂1(x) < α

1 if f̂1(x) ≥ α

(and often practicioners prefer to think in terms of related performance measures
rather than trying to specify a loss directly)
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Standard binary performance measures

• True positive (TP) rate (aka sensitivity or recall): is the conditional
probability of correctly predicting 1 given true label 1.

• True negative (TN) rate (aka specificity): is the conditional probability of
correctly predicting a 0 given true label 0.

• False positive (FP) rate: probability of Type I error (ie 1-specificity).

• False negative (FN) rate: probability of Type II error (ie 1-sensitivity).

• Positive predictive value (PPV) (aka precision): is the conditional probability
of the true label being 1 given a prediction of 1.

• Negative predictive value (NPV): is the conditional probability of the true
label being 0 given a prediction of 0.
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Standard binary performance measures

Source: Wikipedia
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ROC/AUC
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Calibration

Informally: we want the probabilistic forecasts from our model to have good
frequency properties …

… if we predict ‘1’ with probability 0.6 at some x, does this happen 60% of the
time?

• Calibration-in-the-large

• Weak calibration

• Moderate calibration

• Strong calibration
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Cox (1958)

David Cox (1958) proposed logistic regression to assess agreement between
observed binary events and probabilities.

If model predicts ‘1’ with probability f̂(x) and that probability is accurate, then a
logistic regression:

log
(P(Yi = 1)
P(Yi = 0)

)
= β0 + β1 log

(
f̂(xi)

1 − f̂(xi)

)

should have β̂0 = 0 and β̂1 = 1.

In other words, produce out-of-sample predictions from the model and perform a
logistic regression of the true response yi against a univariate derived feature

log
(

f̂(xi)
1−f̂(xi)

)
.

Could perform hypothesis tests for H0 : β0 = 0 and H0 : β1 = 1.
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Calibration-in-the-large

Simplest and easiest form of calibration for a model to satisfy.

Require,
1
n

n∑
i=1

yi ≈ 1
n

n∑
i=1

f̂(xi)

Either, compute informally, or use the method of Cox (1958) with β1 fixed at 1 (ie
only estimate β̂0)
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Weak calibration

Is the name given to the procedure of Cox (1958), with both slope and intercept
fitted and tested.

• If the slope condition is satisfied, but β0 is not plausibly zero and: - is
negative, this corresponds to general overestimation of probabilities for the
event ‘1’.

• is positive, this corresponds to general underestimation of probabilities for the
event ‘1’.

• If the intercept condition is satisfied, but β1 is not plausibly 1 and:
• is smaller than 1, this corresponds to probabilities being pushed out to
extremities (ie probabilities for the event ‘1’ are too large, and probabilities for
the event ‘0’ are too small).

• is larger than 1, this corresponds to probabilities being too under dispersed (ie
probabilities for the event ‘1’ are too small, and probabilities for the event ‘0’
are too large).
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Moderate calibration (I)

Perhaps closest to our intuition: requires observations with the same predicted
probability of ‘1’ have an observed rate of ‘1’ with the same probability.

Continuum of probabilities means usually need to bin predicted probabilities,

[0.0, 0.1), [0.1, 0.2), . . . , [0.9, 1.0]

and observe empirical frequency of responses yi for corresponding observations in
those bins.

Can construct Binomial test confidence intervals for each bin, looking to cover
y = x line.
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Moderate calibration (II)

0

25

50

75

100

0 25 50 75 100
Bin Midpoint

O
bs

er
ve

d 
Ev

en
t P

er
ce

nt
ag

e

Model

model1

model2



Academy of PhD Training in Statistics: Statistical Machine Learning — Model Assessment and Combination

Strong calibration

• Requires moderate calibration for all fixed feature combinations.

• Impractical for continuous features

• Grouping on categorical variables may make impractically small validation
sets

Therefore rarely is strong calibration practical to examine except in the largest
data problems.
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Calibration corrections

What to do if calibration is not satisfied?

• Platt scaling: fit logistic regression of the form:

pi = 1
1 + exp(β0 + β1f̂(xi))

• sometimes use pseudo-responses to regularise (see notes)

• Isotonic regression: fits a piecewise constant monotonically increasing
function — principled method of correcting the probabilities within certain
bins, allowing for bin location and size to be learned.
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Learning curves

Compares performance on training and test data over model learned on
increasing proportion of training data

• can model learn relationship in the data fast?

Performance should improve as training set size increases

Should be fast initially and then slower

• at saturation (zero gradient), learned as much as possible for this model
• gap between train and test lines remains constant

Aim to find ‘sweet spot’ minimising the bias and variance at the right level of
model complexity
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Learning curves — perfect learning curve

A ‘perfect’ learning curve would be like this:
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Learning curves — high bias

• Train and test errors converge but remain very high
• more data not enough — the model is just insufficient to represent the true f(·)

• Poor fit
• Poor generalisation to new data
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Learning curves — high variance

• Large gap between train and test error
• Clear evidence more data needed
• Need to simplify model with fewer and/or less complex features
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Further topics

• Ethics & Fairness

• Reproducibility

• Reporting frameworks

• Interpretable machine learning

• Feature engineering

• Privacy and confidentiality

• Model updating

• Missing data
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Super learners (I)

Models: f (1), . . . , f (s)

K-fold cross validation: DI1 , . . . , DIK

Fit models:

f̂ (1)(· | D \ DI1), . . . , f̂ (1)(· | D \ DIK
)

f̂ (2)(· | D \ DI1), . . . , f̂ (2)(· | D \ DIK
)

...

f̂ (s)(· | D \ DI1), . . . , f̂ (s)(· | D \ DIK
)
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Super learners (II)

For each observation i, in fold Ij , construct predictions:

ŷ
(1)
i = f̂ (1)(xi | D \ DIj ), . . . , ŷ

(s)
i = f̂ (s)(xi | D \ DIj )

Construct design matrix with original responses:

X :=


ŷ

(1)
1 ŷ

(2)
1 . . . ŷ

(s)
1

ŷ
(1)
2 ŷ

(2)
2 . . . ŷ

(s)
2

...
ŷ

(1)
n ŷ

(2)
n . . . ŷ

(s)
n

 y =


y1
y2
...

yn



Finally, build super learner model (eg logistic regression) to predict based on
above.
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ŷ

(1)
n ŷ
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Super learners (II)

For each observation i, in fold Ij , construct predictions:

ŷ
(1)
i = f̂ (1)(xi | D \ DIj ), . . . , ŷ

(s)
i = f̂ (s)(xi | D \ DIj )

Construct design matrix with original responses:

X :=


ŷ

(1)
1 ŷ

(2)
1 . . . ŷ

(s)
1

ŷ
(1)
2 ŷ

(2)
2 . . . ŷ

(s)
2

...
ŷ

(1)
n ŷ

(2)
n . . . ŷ

(s)
n

 y =


y1
y2
...

yn



Finally, build super learner model (eg logistic regression) to predict based on
above.
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