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This Section

Decision trees
® Binary trees
e CART
® Pruning

Bagging
® Qut Of Bag

Random Forests

Boosting
* AdaBoost
® Gradient boosting
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Tabular data

0.391 0.153 green
0.628  0.394 yellow
X = , _ X, = .| x=
—1.556 2.421
medium 2
~ large 3
X.j= . X =
small 1

y_ P
9950



Academy of PhD Training in Statistics: Statistical Machine Learning — Trees, Forests & Boosting

Unstructured data: eg Image

0.70 0.76 0.75 0.71 0.50 0.29 0.46 0.69 0.65 0.62
0.69 0.72 0.67 0.58 0.54 0.53 0.27 0.69 0.70 0.58
0.67 0.69 0.58 0.46 0.69 043 0.11 0.51 0.71 0.54
0.64 0.65 0.54 0.38 0.31 027 0.10 0.34 0.71 0.50
0.64 0.62 0.53 0.28 0.20 0.27 0.14 0.25 0.64 0.47
0.62 0.59 048 024 0.24 026 0.18 0.18 0.56 0.43
0.58 0.55 045 0.23 0.18 0.19 0.09 0.12 044 0.37
0.55 0.51 0.38 0.38 0.28 0.09 0.02 0.13 0.37 0.31
048 042 032 044 0.66 040 0.21 0.19 0.33 0.25
0.42 0.40 0.32 0.36 0.65 0.67 0.38 0.25 0.32 0.20

(10 x 10 pixels)

Me!
(300 x 200 pixels)

(0.70 0.76 0.75 0.71 ... 0.25 0.32 0.20)

Each image flattened to a row vector (300x200=) 60,000 long.
ie each pixel is a feature ... so a lot of columns in feature matrix representation!
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Unstructured data: eg Text

Each element of the input x.; is usually called a document, not an observation.

Document term matrix: is the most common encoding, assigning each word to a

column containing counts, usually after removing common words (‘stop words’)
such as ‘the’, ‘and’, ‘a’, etc.

“It is a truth universally ...” 457 160 ... 7
“Happy families are all alike; ...” 102 0 ... 4

i] — . X_ =
“It was a bright cold day in ...” 5285 54 ... 0

Also possibly n-grams. See https://www.tidytextmining.com/
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Trees — a pictorial introduction (I)
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Trees — a pictorial introduction (II)
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Trees — a pictorial introduction (III)
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Trees — a pictorial introduction (IV)

Classification trees mimic some decision making processes. For example, the
following decision tree is used by A&E doctors to decide what bed type to assign:

Chief complaint of chest
pain?

Regular Nursing
Bed

Regular Nursing
Bed

Any one other factor?

ST segment changes?

(NTG, ML, ST «,ST §,T)

Coronary Care Unit

Coronary Care Unit

This perhaps makes them popular for the feeling of interpretability and of being

like a data-learned expert system.
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Trees — a pictorial introduction (V)

FIGURE 20.4. Partition induced by piGurg 20.6. Partition induced by a  FIGURE 20.7. Partition induced by a
an ordinary binary tree. BSP Iree. sphere tree.

Figure 1: From A Probabilistic Theory of Pattern Recognition (1996).
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Trees

A tree is a data structure representing a partition of feature space achieved by
recursive splitting. Only binary trees (ie splits into two parts) usually considered.
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Trees

A tree is a data structure representing a partition of feature space achieved by
recursive splitting. Only binary trees (ie splits into two parts) usually considered.

Nomenclature:
¢ Root node: top of the tree, represents all of X

¢ Node: some subset of X’ resulting from earlier splits

Left/right child: each half of a split, creating a partition of a node

Leaf node: a node which has no further splits applied

Depth: length of path from the root node to reach this node

Height: maximum depth among all nodes in the tree
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Tree challenges

@ if x; # x; Vi # j then can partition every observation into its own region:
over-fitting?

® infinitely many trees give identical training error (including test error for
hold-out) when feature space continuous.

@ assume growth to fixed height L, = Y7~} 2/ = 2© — 1 nodes, each
choosing among d variables.

.. joint optimisation requires O (d(QL — 1)) operations per iteration of
optimisation.
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Tree challenges

@ if x; # x; Vi # j then can partition every observation into its own region:
over-fitting?

® infinitely many trees give identical training error (including test error for
hold-out) when feature space continuous.

@ assume growth to fixed height L, = Y7~} 2/ = 2© — 1 nodes, each
choosing among d variables.

.. joint optimisation requires O (d(QL — 1)) operations per iteration of
optimisation.

Finding optimal tree is NP-complete! (Hyafil and Rivest, 1976)
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Binary tree notation

Let Rg-é) denote the region specified by the j-th node at depth ¢, for ¢ € {1,2,...}
and j € {0,...,2" — 1}.
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Binary tree notation

Let Rg-é) denote the region specified by the j-th node at depth ¢, for ¢ € {1,2,...}
and j € {0,...,2" — 1}.

NB index j from 0 = represent with binary expansion. ie

510 = 1014 - 'R,gl) = Ro1o01

e Number of digits = ¢
¢ Binary value = j
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Binary tree notation

Let Rg-é) denote the region specified by the j-th node at depth ¢, for ¢ € {1,2,...}
and j € {0,...,2" — 1}.

NB index j from 0 = represent with binary expansion. ie

510 = 1014 - 'R,gl) = Ro1o01

e Number of digits = ¢
¢ Binary value = j

— descendents of node identifiable as start with same binary sequence.
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Binary tree notation: binary expansion indexing
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Binary tree notation: tree paths

Path to depth ¢ denoted vector

Ty = (Tgl,...,ng) Tei € {0,1}

Moving from node at depth ¢ — 1 to i:

e 74 = 0 take left branch;
® 74, = 1 take right branch.

R ., defines region reached along that path, where 7, matches binary expansion
indexing.
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Binary tree notation: tree paths

Path to depth ¢ denoted vector
Ty = (Tgl, . ,ng) Tei € {0, 1}

Moving from node at depth ¢ — 1 to i:

e 74 = 0 take left branch;
® 74, = 1 take right branch.

R ., defines region reached along that path, where 7, matches binary expansion
indexing.

Split R, by obvious extension into Rr,o and R,,1, with

RTZO N RT@l = @ and RT@O U RT[l = RTZ
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Binary tree notation: axis parallel splits

Split region R on dimension 7 at split value s by,
?(R,i,s) ={xeR:z <s}

?(R,i,s) ={x€eR:z; > s}
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Binary tree notation: axis parallel splits

Split region R on dimension 7 at split value s by,
?(R,i,s) ={xeR:z; <s}
?(R,i,s) ={x€eR:z; > s}
Then, taking Ry := X, recursively define,
Rr0 = </'F(RTZ,Z'U, S7,)

Y .
RT@I = X(RTU’LTWSTZ)
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Binary tree notation: axis parallel splits

Split region R on dimension 7 at split value s by,
?(R,i,s) ={xeR:z; <s}
?(R,i,s) ={x€eR:z; > s}
Then, taking Ry := X, recursively define,
Rr0 = </'F(Rn,,iw, S7,)

Y .
RT@I = X(RTN’LT(’STZ)

Tree fully defined by split indices, i,,, and values, s,,
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CART (Classification And Regression Trees) Breiman et al. (1984)

Corresponding data notation ...

Non-calligraphic versions of X and R, X and R, denote observations in region:
<_
X(R.i,5):={(x9): (x.v) € D.x € X(R.is)}
RT@O = y(’]?/TW iT[a ST@)

Similarly X and R: 1
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CART (Classification And Regression Trees) Breiman et al. (1984)

Initialise: 7 =0, S = {71 = (0),71 = (1)}
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CART (Classification And Regression Trees) Breiman et al. (1984)

Initialise: 7 =0, S = {71 = (0),71 = (1)}

Repeat: remove first 7, € S and for this node, solve to find i,, and s, as,

argraisn {C (?(vai 8)) + C (?(Rﬂvi 3))}

subject to \?(R”, i,s)| > 0and \Y(Rw,i, s)| > 0, where C(-) a cost function.
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CART (Classification And Regression Trees) Breiman et al. (1984)

Initialise: 7 =0, S = {71 = (0),71 = (1)}

Repeat: remove first 7, € S and for this node, solve to find i,, and s, as,

argraisn {C (?(vai 8)) + C (?(Rﬂvi 3))}

subject to \?(R”, i,s)| > 0and \Y(Rw,i, s)| > 0, where C(-) a cost function.

e No split satisfies constraint? Move to next index in S.

y_ P
9950



Academy of PhD Training in Statistics: Statistical Machine Learning — Trees, Forests & Boosting

CART (Classification And Regression Trees) Breiman et al. (1984)

Initialise: 7 =0, S = {71 = (0),71 = (1)}

Repeat: remove first 7, € S and for this node, solve to find i,, and s, as,
arg min {C’ (?(R”,i 8)) +C (?(R”,i 3))}

subject to \?(R”, i,s)| > 0and \Y(Rw,i, s)| > 0, where C(-) a cost function.

e No split satisfies constraint? Move to next index in S.
e Jsplit satisfying constraint? Check stopping criterion:
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CART (Classification And Regression Trees) Breiman et al. (1984)

Initialise: 7 =0, S = {71 = (0),71 = (1)}

Repeat: remove first 7, € S and for this node, solve to find i,, and s, as,

argraisn {C (?(vai 8)) + C (?(Rﬂvi 3))}

subject to \?(R”, i,s)| > 0and \Y(Rw,i, s)| > 0, where C(-) a cost function.

e No split satisfies constraint? Move to next index in S.
e Jsplit satisfying constraint? Check stopping criterion:
¢ the stopping criterion is not triggered, then:
® (ir,,sr,)is added to 7; and
® Toy1 = (7’[17 Ce ,TM,O) and Tor1 = (Tgl, co., Tee, 1) are added to S.
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CART (Classification And Regression Trees) Breiman et al. (1984)

Initialise: 7 =0, S = {71 = (0),71 = (1)}

Repeat: remove first 7, € S and for this node, solve to find i,, and s, as,

argraisn {C (?(vai 8)) + C (?(Rﬂvi 3))}

subject to \?(R”, i,s)| > 0and \Y(Rw,i, s)| > 0, where C(-) a cost function.

e No split satisfies constraint? Move to next index in S.
e Jsplit satisfying constraint? Check stopping criterion:
¢ the stopping criterion is not triggered, then:
® (ir,,sr,)is added to 7; and
® Toy1 = (7’[17 Ce ,TM,O) and Tor1 = (Tgl, co., Tee, 1) are added to S.
® the stopping criterion is triggered then discard i.-, and s..,, resulting in R,
becoming a leaf on that branch.
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CART (Classification And Regression Trees) Breiman et al. (1984)

Initialise: 7 =0, S = {71 = (0),71 = (1)}

Repeat: remove first 7, € S and for this node, solve to find i,, and s, as,

argraisn {C (?(vai 8)) + C (?(Rﬂvi 3))}

subject to \?(R”, i,s)| > 0and \Y(Rw,i, s)| > 0, where C(-) a cost function.

e No split satisfies constraint? Move to next index in S.
e Jsplit satisfying constraint? Check stopping criterion:
¢ the stopping criterion is not triggered, then:
® (ir,,sr,)is added to 7; and
® Toy1 = (7’[17 Ce ,TM,O) and Tor1 = (Tgl, co., Tee, 1) are added to S.
® the stopping criterion is triggered then discard i.-, and s..,, resulting in R,
becoming a leaf on that branch.
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Cost functions

Trees make same prediction for all observations in given region: cost function
measures inhomogeneity of a region.

e Mean square error (regression),

where § = L il > (xy)cRY

e Misclassification rate (classification)

> Ly #39)

(x,9)ER

where § is the most frequently occurring label in the set R.
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Cost functions

¢ Entropy/deviance (classification)

G

C(R) := Zﬁg log py
g=1

where p, is the empirical proportion of label ¢ in the set R.

¢ Gini index (classification)

e
Z (1—1py)

where p, is the empirical proportion of label ¢ in the set R.
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Stopping criterion

Grow a tree until every leaf contains single observation? Massive overfitting!
Possible stopping rules:

¢ Impose complexity parameter, specifying minimum amount a split must
reduce cost.

e Apriori specify height for the tree, any split resulting in nodes with depth
exceeding height is prevented.

¢ Require minimum number of observations falling inside a node.
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Stopping criterion

Grow a tree until every leaf contains single observation? Massive overfitting!
Possible stopping rules:

¢ Impose complexity parameter, specifying minimum amount a split must
reduce cost.

e Apriori specify height for the tree, any split resulting in nodes with depth
exceeding height is prevented.

¢ Require minimum number of observations falling inside a node.

All these are supported by rpart, the main decision tree function/package in R.
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Stopping criterion

Grow a tree until every leaf contains single observation? Massive overfitting!
Possible stopping rules:

¢ Impose complexity parameter, specifying minimum amount a split must
reduce cost.

e Apriori specify height for the tree, any split resulting in nodes with depth
exceeding height is prevented.

¢ Require minimum number of observations falling inside a node.
All these are supported by rpart, the main decision tree function/package in R.

Complexity parameter seems most well founded perhaps?
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Stopping criterion: problem
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Pruning

Alternative approach: grow a big tree anyway, then prune the branches back!

In other words, identify one or more non-leaf nodes to remove all descendents
from, turning them into leaf nodes.
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Pruning

Alternative approach: grow a big tree anyway, then prune the branches back!

In other words, identify one or more non-leaf nodes to remove all descendents
from, turning them into leaf nodes.

Pruning 7 back to node index 7, is defined by:

p(T,70) :=T \ {(ie,, S¢,) : k> Cand 7y, = e; Vi € {1,...,(}}
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Pruning

Alternative approach: grow a big tree anyway, then prune the branches back!

In other words, identify one or more non-leaf nodes to remove all descendents
from, turning them into leaf nodes.

Pruning 7 back to node index 7, is defined by:

p(T,70) :=T \ {(ie,, S¢,) : k> Cand 7y, = e; Vi € {1,...,(}}

Cost-complexity pruning: 7 full tree. Recursively prune 7; to 7;+1 = p(7;, 7¢) by

solving: - -
_ Err(p(7i, ex)) — Err(Ti)
Ty = argmin
e |[Tilla = lo(Ti; €x)lla
Gives sequence of trees 7y, 71, . . .. Select one using held-out data.
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Pruning as regularisation

Note, reduction in error from a single pruning is:

- _ E(p(Ti, 7)) ~ Enr(7)
C AT~ To(Te o)l

= Ert(p(T;, 7¢)) + aillp(Ti, 7¢)||a = Err(T7) + || Ti |

.. defines regularised path through tree space!
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Summary

Pros

e Very flexible model
e Yet still quite interpretable

e Computationally much more tractable than local methods
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Summary

Pros

e Very flexible model
e Yet still quite interpretable

e Computationally much more tractable than local methods
Cons

e Struggle to represent additive relationships, so can underperform linear
models in simple settings

¢ Need to tune through pruning and optimal tree unachievable

¢ Tends to be a very high variance model!
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Summary

Pros

e Very flexible model
e Yet still quite interpretable

e Computationally much more tractable than local methods
Cons

e Struggle to represent additive relationships, so can underperform linear
models in simple settings

¢ Need to tune through pruning and optimal tree unachievable

¢ Tends to be a very high variance model!
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Bagging (Breiman, 1996)

“Bagging” is an abbreviation of Bootstrap AGGregatING.
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Bagging (Breiman, 1996)

“Bagging” is an abbreviation of Bootstrap AGGregatING.
f (-] D) model (eg trees) fitted to data set D (call this the base learner).

f turned into bagged estimator by repeatedly fitting to bootstrap resamples of
data, then take average.
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Bagging (Breiman, 1996)

“Bagging” is an abbreviation of Bootstrap AGGregatING.
f (-] D) model (eg trees) fitted to data set D (call this the base learner).

f turned into bagged estimator by repeatedly fitting to bootstrap resamples of
data, then take average.

Draw B samples size |D| with replacement from D, D*!, ..., D*B. Then,
b 1E
ag - D*b
f =3 bZ:; x|
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Bagging (Breiman, 1996)

“Bagging” is an abbreviation of Bootstrap AGGregatING.
f (-] D) model (eg trees) fitted to data set D (call this the base learner).

f turned into bagged estimator by repeatedly fitting to bootstrap resamples of
data, then take average.

Draw B samples size |D| with replacement from D, D*!, ..., D*B. Then,
b 1E
ag - D*b
f =3 bZ:; x|

fP8(x) = Ep, | f(x| Dn)]
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Why bagging?

B, [(s— Fx1D0)"| =4~ 2050, [fix| Da)] + £, [Fx| D]
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Why bagging?

B, [(s— Fx1D0)"| =4~ 2050, [fix| Da)] + £, [Fx| D]

>y~ 2yEp, [f(x| Du)] +Ep, [f(x| D))’
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Why bagging?

B, [(s— Fx1D0)"| =4~ 2050, [fix| Da)] + £, [Fx| D]
>y~ 2yEp, [f(x| Du)] +Ep, [f(x| D))’

= (y—Ep, [fx|D)])’
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Why bagging?
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Why bagging?
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Why bagging?
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Bagging benefits

¢ Biggest gains when base learner variance high
® egTrees!

® Grow large trees with minimal (or no) pruning. Relies on bagging procedure
directly to avoid overfit.

® or; prune each tree as was described in the last lecture. Note: now we don’t
need to do cross-validation, because we know on average 36.8% of original data
will not be in bootstrap sample so can be used as a test set for pruning.
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Bagging benefits

¢ Biggest gains when base learner variance high
® egTrees!

® Grow large trees with minimal (or no) pruning. Relies on bagging procedure
directly to avoid overfit.

® or; prune each tree as was described in the last lecture. Note: now we don’t
need to do cross-validation, because we know on average 36.8% of original data
will not be in bootstrap sample so can be used as a test set for pruning.

¢ Note can use for any model, including say knn
® May be additional theory involved

¢ Hall and Samworth (2005) show bootstrap resample size must be at most 69%
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Bagging benefits

¢ Biggest gains when base learner variance high
® egTrees!

® Grow large trees with minimal (or no) pruning. Relies on bagging procedure
directly to avoid overfit.

® or; prune each tree as was described in the last lecture. Note: now we don’t
need to do cross-validation, because we know on average 36.8% of original data
will not be in bootstrap sample so can be used as a test set for pruning.

¢ Note can use for any model, including say knn
® May be additional theory involved

¢ Hall and Samworth (2005) show bootstrap resample size must be at most 69%

¢ Full theoretical gain won’t be achieved since we’re only approximating Ep,
by bootstrapping
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Bootstrap and Trees — bootstrap split locations
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Bootstrap and Trees — true iid split locations
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Bootstrap and Trees — split location densities
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Bootstrap and Trees — MSE densities
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Bagged classification

Then, to classify a new observation x:
A B A
fP38(x) = arg max Z 1 (arg max (fk(x ‘ D*b)> = j)
T =1

This chooses the class label for which the most bootstrapped trees ‘voted’.
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Bagging class probabilities

Care is required when constructing a probability estimate. Is this a good idea?

ﬁ?ag(x) . éz 1 (argmgx (fk(x | D*b)) = j)

b=1
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Bagging class probabilities

Care is required when constructing a probability estimate. Is this a good idea?

B
ﬁ?ag(x) . éz 1 (argmgx (fk(x | D*b)) = j)

b=1
No! This is proportion of trees voting for given class.

If ps(x) = 0.8, say, and all bootstrapped trees correctly identify C, as most likely
response then above estimates the probability as 1!
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Bagging class probabilities

Care is required when constructing a probability estimate. Is this a good idea?

B
.bag z i 7 *xb\)
RCES DO (argmax (fux| D)) =)
No! This is proportion of trees voting for given class.

If ps(x) = 0.8, say, and all bootstrapped trees correctly identify C, as most likely
response then above estimates the probability as 1!

Instead, directly average tree output probabilities
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Out of bag error

Not every observation included in every bootstrap sample:

P ((X’Layz) € D*b)
=1-P ((Xiayi) ¢ D*b>
. ) o *b o
=1 _P((Xl Y1 ) 7& (thl) n---N (Xn ayn ) 7‘& (Xzayz))
=1- H P( X ,y] ) # (x4, yi)> by indep sampling with replacement

(-l

~1—ec 120632
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When bagging?

Pros

¢ If you have a lot of data, bagging makes sense because the bootstrapped
distribution will be good approx of population distribution.
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Pros

¢ If you have a lot of data, bagging makes sense because the bootstrapped
distribution will be good approx of population distribution.

® Bagging is not restricted to trees!
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When bagging?

Pros

¢ If you have a lot of data, bagging makes sense because the bootstrapped
distribution will be good approx of population distribution.
® Bagging is not restricted to trees!

e Most useful when it is desirable to reduce the variance of a predictor.
¢ under the (inaccurate) independence assumption, variance will reduce by a
factor of ~ 1/B for B bootstrap resamples.
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When bagging?

Pros

¢ If you have a lot of data, bagging makes sense because the bootstrapped
distribution will be good approx of population distribution.

® Bagging is not restricted to trees!

e Most useful when it is desirable to reduce the variance of a predictor.
¢ under the (inaccurate) independence assumption, variance will reduce by a
factor of ~ 1/B for B bootstrap resamples.
e We can estimate the error in bagging without needing cross-validation, since
any given observation will not be used in around 36.8% of the models (some
care needed: see ESL, p.251). “Out Of Bag” (OOB) error estimation (cf 3-CV)
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When bagging?

Pros

¢ If you have a lot of data, bagging makes sense because the bootstrapped
distribution will be good approx of population distribution.

® Bagging is not restricted to trees!

e Most useful when it is desirable to reduce the variance of a predictor.
¢ under the (inaccurate) independence assumption, variance will reduce by a
factor of ~ 1/B for B bootstrap resamples.

e We can estimate the error in bagging without needing cross-validation, since
any given observation will not be used in around 36.8% of the models (some
care needed: see ESL, p.251). “Out Of Bag” (OOB) error estimation (cf 3-CV)

Cons

¢ We lose interpretability as the final estimate is not a tree.
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When bagging?

Pros

¢ If you have a lot of data, bagging makes sense because the bootstrapped
distribution will be good approx of population distribution.

® Bagging is not restricted to trees!

e Most useful when it is desirable to reduce the variance of a predictor.
¢ under the (inaccurate) independence assumption, variance will reduce by a
factor of ~ 1/B for B bootstrap resamples.

e We can estimate the error in bagging without needing cross-validation, since
any given observation will not be used in around 36.8% of the models (some
care needed: see ESL, p.251). “Out Of Bag” (OOB) error estimation (cf 3-CV)

Cons

¢ We lose interpretability as the final estimate is not a tree.
e Computational cost is multiplied by a factor of at least B.
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Silk purse or sow’s ear?

“Bagging goes a ways toward making a silk purse out of a sow’s ear, especially
if the sow’s ear is twitchy. It is a relatively easy way to improve an existing
method, since all that needs adding is a loop in front that selects the bootstrap
sample and sends it to the procedure and a back end that does the aggregation.
What one loses, with the trees, is a simple and interpretable structure. What
one gains is increased accuracy.”

— Breiman (1996), p.137
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Random forests

Bagging improved on single CART model by reducing the variance through
resampling. But, in fact the bagged models are still quite correlated.

— less variance reduction achieved by averaging.
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Random forests

Bagging improved on single CART model by reducing the variance through
resampling. But, in fact the bagged models are still quite correlated.

— less variance reduction achieved by averaging.

Can we make them more independent in order to produce a better variance
reduction?
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Random forests

Bagging improved on single CART model by reducing the variance through
resampling. But, in fact the bagged models are still quite correlated.

— less variance reduction achieved by averaging.

Can we make them more independent in order to produce a better variance
reduction?

Random forests achieve this by not only resampling observations, but by
restricting the model to random subspaces, X' C X.

—> Random forests = Bagging + Random Subspaces
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Random forest algorithm

@ Take a bootstrap resample D* of the data, as for bagging.
® Fit the CART algorithm to bootstrap sample, but each time a split is made,

only optimise over a subset of m < d variables.
® Perhaps prune individual trees
® Many algoriths (eg ranger in R) grow to purity without pruning
® Average the prediction of all B trees

y_ P
9950



Academy of PhD Training in Statistics: Statistical Machine Learning — Trees, Forests & Boosting

Random forest algorithm

@ Take a bootstrap resample D* of the data, as for bagging.
® Fit the CART algorithm to bootstrap sample, but each time a split is made,

only optimise over a subset of m < d variables.
® Perhaps prune individual trees
® Many algoriths (eg ranger in R) grow to purity without pruning
® Average the prediction of all B trees

The random subspaces causes less correlation in the trees ... combined with
bagging this means the trees are a lot less correlated and variance is reduced
substantially.
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Breiman (2001) Theory

@ As number of trees B — oo, forest converges to limiting value of
generalisation error for base learners (= won’t overfit by adding trees)
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Breiman (2001) Theory

@ As number of trees B — oo, forest converges to limiting value of
generalisation error for base learners (= won’t overfit by adding trees)

® Generalisation error asymptotically bounded by
p(1—5%)
&< T

where S is how ‘strong’, and p is how correlated, randomised base learner
models in the forest are.
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Breiman (2001) Theory

@ As number of trees B — oo, forest converges to limiting value of
generalisation error for base learners (= won’t overfit by adding trees)
® Generalisation error asymptotically bounded by

p(1—5%)
£

where S is how ‘strong’, and p is how correlated, randomised base learner
models in the forest are.

Aside: Really?
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Breiman (2001) Theory

@ As number of trees B — oo, forest converges to limiting value of
generalisation error for base learners (= won’t overfit by adding trees)
® Generalisation error asymptotically bounded by

p(1 - 5%

£<Pg

where S is how ‘strong’, and p is how correlated, randomised base learner
models in the forest are.

Aside: Really? Consider binary classification Assume at feature value x we have
B independent classifiers, each with a 0-1 loss of 0.4.

— distribution of number of votes for the correct label is Binomial(B, 0.6).
Then,
P(> B/2 votes for correct class) — 1as B — o
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Variable importance from forests (I)

Option 1

For each feature x.;, j = 1,...,d, loop over each tree in the forest

e find all nodes that make a split on x.;

e compute the improvement in loss criterion the split causes (eg
accuracy/Gini/etc)

e sum improvements across nodes in the tree

Finally, sum improvement across all trees.
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Variable importance from forests (I)

Option 1

For each feature x.;, j = 1,...,d, loop over each tree in the forest

e find all nodes that make a split on x.;

e compute the improvement in loss criterion the split causes (eg
accuracy/Gini/etc)

e sum improvements across nodes in the tree

Finally, sum improvement across all trees.

This is the method used by randomForest::varImpPlot.
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Variable importance from forests (II)

Option 2

Already discussed that bagging enables out of bag error estimation.

To compute out of bag variable importance, for each featurex.;,j =1,...,d
e for each tree, take the out of bag samples, D°°°, and compute the predictive
accuracy for that tree;
e next, take D°°P and randomly permute all the entries for jth variable across
observations;
e predict for this permuted D°°° and compute change in predictive accuracy for
that tree.

Finally average the decrease in accuracy over all trees.
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Random Forest discussion

Pros

¢ Inherits the advantages of bagging and trees
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¢ Inherits the advantages of bagging and trees
® Very easy to parallelise
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¢ Inherits the advantages of bagging and trees
® Very easy to parallelise
e Has an integrated measure of variable importance
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Random Forest discussion

Pros

Inherits the advantages of bagging and trees
® Very easy to parallelise
e Has an integrated measure of variable importance

Works well with high dimensional data
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Random Forest discussion

Pros

Inherits the advantages of bagging and trees
® Very easy to parallelise
e Has an integrated measure of variable importance

Works well with high dimensional data
e Extensive tuning not really needed
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Random Forest discussion

Pros

Inherits the advantages of bagging and trees

® Very easy to parallelise

e Has an integrated measure of variable importance
Works well with high dimensional data

e Extensive tuning not really needed

Cons

¢ Often quite suboptimal for regression
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Random Forest discussion

Pros

Inherits the advantages of bagging and trees

® Very easy to parallelise

e Has an integrated measure of variable importance
Works well with high dimensional data

e Extensive tuning not really needed

Cons

¢ Often quite suboptimal for regression
e Same extrapolation issue as trees
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Random Forest discussion

Pros

Inherits the advantages of bagging and trees

® Very easy to parallelise

e Has an integrated measure of variable importance
Works well with high dimensional data

e Extensive tuning not really needed

Cons

¢ Often quite suboptimal for regression
e Same extrapolation issue as trees
e Memory hungry model
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Random Forest discussion

Pros

Inherits the advantages of bagging and trees

® Very easy to parallelise

e Has an integrated measure of variable importance
Works well with high dimensional data

e Extensive tuning not really needed

Cons

¢ Often quite suboptimal for regression
e Same extrapolation issue as trees

e Memory hungry model

¢ Prediction slow for big ensembles
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Boosting

Q: Michael Kearns (1988): “is it possible for weak learners be combined to create a
strong learner with low bias?” He call this the “Hypothesis Boosting Problem”.
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Boosting

Q: Michael Kearns (1988): “is it possible for weak learners be combined to create a
strong learner with low bias?” He call this the “Hypothesis Boosting Problem”.

A: Yes! (Schapire, 1990) But, AdaBoost (Freund and Schapire, 1997) first
practically usable approach.
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Boosting

Q: Michael Kearns (1988): “is it possible for weak learners be combined to create a
strong learner with low bias?” He call this the “Hypothesis Boosting Problem”.

A: Yes! (Schapire, 1990) But, AdaBoost (Freund and Schapire, 1997) first
practically usable approach.

Again, build ensemble, but this time each classifier very weak and build iteratively
to improve:

B
-3 onf s

(F'B) is ensemble, not CDF!)
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AdaBoost (binary classification, Y = {—1,+1})

w = (w1, ..., w,), for each obs in D. Initialise, w; = 1/n Viand f(x) = 0Vx € X.
For iterationsb=1,..., B:
@ Fit tree to weighted dataset /w loss
f(b) = arg min Z w;
T€Tm) {isf(x:)#yi}

® Compute weighted error:

sz { Xz 7é yz}
@ Ifc > 3, discard f® and terminate. Else, if ¢ < 3, retain, set coefficient to

w; exp (—ozbf<b) (Xz)yz)
2\/e(1—¢)

1 1-— .
= —log (8) and update weights: w; < A
2 5 A |

O
4
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AdaBoost (binary classification, Y = {—1,+1})

Upon termination, up to B weak learners () and coefficient weights oy, so full

ensemble, R X
P(x) =Y af"(x)
b
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AdaBoost (binary classification, Y = {—1,+1})

Upon termination, up to B weak learners () and coefficient weights oy, so full
ensemble,

Fx)=> af¥(x)
b

Scoring classifier, so sign indicates label.

Early termination due to ¢, > % — weak learner no better than guessing, so
don’t add more weak learners.
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AdaBoost (binary classification, Y = {—1,+1})

Upon termination, up to B weak learners () and coefficient weights oy, so full

ensemble, R X
P(x) =Y af"(x)
b

Scoring classifier, so sign indicates label.

Early termination due to ¢, > % — weak learner no better than guessing, so
don’t add more weak learners.

AdaBoost aggressively drives training/apparent error to zero in O(logn)
iterations.
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Boosting = greedy forward stagewise (Friedman et al., 2000)

Sete; =y;forie {1,...,n}. Forb=1,..., B, iterate:
@ Fit a model (eg tree) f( (1) and multiplier ), to the response ¢4, ..., &, as,

{f® (), )} < arg  min Z (gi - )\bf(b)(x))2

F€T(ny MR

® Update residuals R
Ei < & — )\bf(b) (X) X
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Boosting = greedy forward stagewise (Friedman et al., 2000)

Sete; =y;forie {1,...,n}. Forb=1,..., B, iterate:
@ Fit a model (eg tree) f( (1) and multiplier ), to the response ¢4, ..., &, as,

n

{f® (), )} < arg  min Z (gi - )\bf(b)(x))2

F€T(ny MR

® Update residuals R
Ej < & — )\bf(b) (X) X

Output as final boosted model

B
PO = Y 0 f0 (x)
b=1
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Gradient boosting machines (I)

Gradient descent:

Oiv1 = 0; — 7V9(9)‘0:0
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Gradient boosting machines (I)

Gradient descent:

Oiv1 = 0; — 7V9(9)‘0:0

— =16 — Z’ng(H)‘ezg.

Very evocative of boosting!
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Gradient boosting machines (II)

E(F) =Exy L (Y,F(X)) = Ex [Ey| x_x [£(Y, F(x))]]
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Gradient boosting machines (II)

E(F) =Exy L (Y,F(X)) = Ex [Ey| x_x [£(Y, F(x))]]
£ (F(x)) == Ey | x L (Y, F(x))

Do gradient descent on £ (F'(x)) as a function of F'(x) ... ie in function space.
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Gradient boosting machines (II)

E(F) =Exy L (Y,F(X)) = Ex [Ey| x_x [£(Y, F(x))]]
£ (F(x)) == Ey | x L (Y, F(x))

Do gradient descent on £ (F'(x)) as a function of F'(x) ... ie in function space.

FBD(x) = FOB) (x) —4VE (F(X))‘F(X)ZF(B)(X)
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Gradient boosting machines (II)

E(F) =Exy L (Y,F(X)) = Ex [Ey| x_x [£(Y, F(x))]]
£ (F(x)) == Ey | x L (Y, F(x))

Do gradient descent on £ (F'(x)) as a function of F'(x) ... ie in function space.

FBD(x) = FOB) (x) —4VE (F(X))‘F(X)ZF(B)(X)

Notation,
LY, F(x))’
x):=VE(F(x . =E
nB(x) (F( ))‘F(x):F(B)(x) YIX[ 0 F(x) F(x)=F(B)(x) F%‘

9950
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Gradient boosting machines (III)

We’re doing boosting, not gradient descent really, so after computing gradient at
current location, compute coefficient:

apt1 = arg moiﬂEXYﬁ (Y, F(B)(X) — omB(X))

and add f(5+Y(x) = np(x) and ap to the ensemble.
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Gradient boosting machines (III)

We’re doing boosting, not gradient descent really, so after computing gradient at
current location, compute coefficient:

apt1 = arg moiﬂEXYﬁ (Y, F(B)(X) — omB(X))

and add f(5+Y(x) = np(x) and ap to the ensemble.

BUT we can’t compute this gradient!
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Gradient boosting machines (III)

We’re doing boosting, not gradient descent really, so after computing gradient at
current location, compute coefficient:

apt1 = arg moiﬂEXYﬁ (Y, F(B)(X) — omB(X))

and add f(5+Y(x) = np(x) and ap to the ensemble.

BUT we can’t compute this gradient! Compute instead:

R 9L (yi, F'(x)) ,
NB(Xi) = —=——- Vi
( ) 8F(X) F(x):ﬁ'(B)(xi)
and fit base learner to (—7p(x1),..., —Np(xs)) € R™ by ERM for square loss.
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Gradient boosting machines (IV)

In other words, add to ensemble:

FED — arg min 3" () - 850x0)’

feF,Ber i

aremin S 2 (o BB (50 4 o fEFD (5
aB+1 argglelﬁgﬁ(yzf (x;) +ouf (Xz))
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Gradient boosting machines (IV)

In other words, add to ensemble:

FED — arg min 3" () - 850x0)’

feF,Ber i

aremin S 2 (o BB (50 4 o fEFD (5
aB+1 argglelﬁgﬁ(yzf (x;) +ouf (Xz))

General and powerful approach: just convex differentiable loss required, since
gradient approx by arbitrary base learner via least squares.
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