
Academy of PhD Training in Statistics
Statistical Machine Learning

Louis J.M. Aslett (louis.aslett@durham.ac.uk)

Trees, Forests & Boosting

mailto:louis.aslett@durham.ac.uk


Academy of PhD Training in Statistics: Statistical Machine Learning — Trees, Forests & Boosting

This Section

• Decision trees
• Binary trees
• CART
• Pruning

• Bagging
• Out Of Bag

• Random Forests

• Boosting
• AdaBoost
• Gradient boosting
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Tabular data
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<latexit sha1_base64="smzV9tB4r4SPmkfice6wgNdAS2Y="></latexit>

X =











0 1

0 0

.

.

.
.
.
.

1 0











<latexit sha1_base64="DZyqAbepH5rem0W7H12VKNX/qew=">AAACk3icbVFtixMxEM6ub+f6VhVB8Eu84uEHKbtSUBDhUD/4RTjB3hWaUpLsbC80m+wls4dl6T/wD/ovxF9gtruIvTow4cnzzDDDM6LSymOa/ozia9dv3Lx1cDu5c/fe/QeDh49Ova2dhIm02rqp4B60MjBBhRqmlQNeCg1nYvWx1c8uwXllzTdcVzAv+dKoQkmOgVoMfrCS47komumGvqdMwFKZpgqcU983Cbu4qHnOuqd96RFNQ2Yh9zXGkl5vs/uxy9yi3wFbPuuqEgYm/ztvMRimo3QbdB9kPRiSPk4Wg18st7IuwaDU3PtZllY4b7hDJTWE/WsPFZcrvoRZgIaX4OfN1rUNfRGYnBbWhTRIt+y/HQ0vvV+XIlS2HvmrWkv+T5vVWLydN8pUNYKR3aCi1hQtbU9Ac+VAol4HwKVTYVcqz7njEsOhdqYIa1fIhX+Vh+3q0mySYFF21ZB9cPp6lI1H46/j4fFRb9YBeUYOyUuSkTfkmHwmJ2RCJPkdPY2eR4fxk/hd/CH+1JXGUd/zmOxE/OUPjzPChw==</latexit>
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<latexit sha1_base64="ZSF19IO9GF8D3JxEXeqH3gQhKSo="></latexit>
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<latexit sha1_base64="/4TEJHCIhk1Fb5/EAcHne7A/wDA=">AAACfnicbVFNaxsxENVu+pFuk8ZNjrmImpoeWnc3NTSXQCCXHFOoE4NljKSddYS10kaaTWsW/9Ae+h/6E6q1TWjiDox4em9GMzyJSiuPaforineePX/xcvdV8npv/81B5+3htbe1kzCUVls3EtyDVgaGqFDDqHLAS6HhRswvWv3mHpxX1nzHRQWTks+MKpTkGKhp5wcrOd6Kohkt6RllAmbKNFXgnPq5TNjdXc1ztj7ak/boSchtnrEk8F9abYXYfW7RP1wz2ksYmPzh6Wmnm/bTVdBtkG1Al2ziatr5w3Ir6xIMSs29H2dphZOGO1RSQ1i19lBxOeczGAdoeAl+0qwMWtL3gclpYV1Ig3TF/tvR8NL7RSlCZWuHf6q15P+0cY3F6aRRpqoRjFwPKmpN0dLWbZorBxL1IgAunQq7UnnLHZcY/uTRFGHtHLnwH/OwXV2aZRIsyp4asg2uT/rZoD/4Nuie9zZm7ZJj8o58IBn5Ss7JJbkiQyLJ72gn2ov2YxL34k/x53VpHG16jsijiE//Aq+kvQU=</latexit>
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<latexit sha1_base64="7jlI51bE4icL0kdBalhxZVdZdEQ="></latexit>
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Unstructured data: eg Image

Me!

(300 x 200 pixels)

My eye!

(10 x 10 pixels)

=

































0.70 0.76 0.75 0.71 0.50 0.29 0.46 0.69 0.65 0.62

0.69 0.72 0.67 0.58 0.54 0.53 0.27 0.69 0.70 0.58

0.67 0.69 0.58 0.46 0.69 0.43 0.11 0.51 0.71 0.54

0.64 0.65 0.54 0.38 0.31 0.27 0.10 0.34 0.71 0.50

0.64 0.62 0.53 0.28 0.20 0.27 0.14 0.25 0.64 0.47

0.62 0.59 0.48 0.24 0.24 0.26 0.18 0.18 0.56 0.43

0.58 0.55 0.45 0.23 0.18 0.19 0.09 0.12 0.44 0.37

0.55 0.51 0.38 0.38 0.28 0.09 0.02 0.13 0.37 0.31

0.48 0.42 0.32 0.44 0.66 0.40 0.21 0.19 0.33 0.25

0.42 0.40 0.32 0.36 0.65 0.67 0.38 0.25 0.32 0.20

































<latexit sha1_base64="pYyIh6/0/vj8CDLZEem07eaY9sM="></latexit>

�

0.70 0.76 0.75 0.71 . . . 0.25 0.32 0.20
�

<latexit sha1_base64="2VKOrNbBMvKfWz/7dF3n/6rOHMw="></latexit>

Each image flattened to a row vector (300x200=) 60,000 long.

ie each pixel is a feature … so a lot of columns in feature matrix representation!
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Unstructured data: eg Text

Each element of the input x̃·j is usually called a document, not an observation.

Document term matrix: is the most common encoding, assigning each word to a
column containing counts, usually after removing common words (‘stop words’)
such as ‘the’, ‘and’, ‘a’, etc.

other

features

other

features
x̃
·j =











“It is a truth universally ...”
“Happy families are all alike; ...”

...
“It was a bright cold day in ...”











<latexit sha1_base64="vfgEKkc4oeq8QJhowrdm+sbdv44="></latexit>

X =
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<latexit sha1_base64="QQeQN17QQQQ0TZflgr5gODOHIYU="></latexit>

Also possibly n-grams. See https://www.tidytextmining.com/

https://www.tidytextmining.com/
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Trees — a pictorial introduction (I)
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Trees — a pictorial introduction (II)
x < 0.7

<latexit sha1_base64="8O35BSnDB6kNkwMwFZq5MXWmtW4=">AAACCnicbVDLSgMxFM34rPVVdekmWBQXUmakUhcuCm5cVnDaQjuUTCbThuYxJBmxDP0Dwa3+hjtx60/4F36CaTsL23ogcDjnXu7JCRNGtXHdb2dldW19Y7OwVdze2d3bLx0cNrVMFSY+lkyqdog0YVQQ31DDSDtRBPGQkVY4vJ34rUeiNJXiwYwSEnDUFzSmGBkr+U83bqXWK5XdijsFXCZeTsogR6NX+ulGEqecCIMZ0rrjuYkJMqQMxYyMi91UkwThIeqTjqUCcaKDbBp2DE+tEsFYKvuEgVP170aGuNYjHtpJjsxAL3oT8T+vk5r4OsioSFJDBJ4dilMGjYSTn8OIKoING1mCsKI2K8QDpBA2tp+5K6GUQ4NCfRHZdCkX46KtyFssZJk0LytetXJ1Xy3Xz/KyCuAYnIBz4IEaqIM70AA+wICCF/AK3pxn5935cD5noytOvnME5uB8/QItxZp/</latexit>

y < 0.8

<latexit sha1_base64="bBteG88vPCJyb+iEWaXO4dcwKAo=">AAACCnicbVDNSgMxGMzWv1r/qh69BIviQZZdqdiDh4IXjxXcttAuJZvNtqHZZEmywrL0DQSv+hrexKsv4Vv4CKbtHmzrQGCY+T6+yQQJo0o7zrdVWlvf2Nwqb1d2dvf2D6qHR20lUomJhwUTshsgRRjlxNNUM9JNJEFxwEgnGN9N/c4TkYoK/qizhPgxGnIaUYy0kbzs1rEbg2rNsZ0Z4CpxC1IDBVqD6k8/FDiNCdeYIaV6rpNoP0dSU8zIpNJPFUkQHqMh6RnKUUyUn8/CTuCZUUIYCWke13Cm/t3IUaxUFgdmMkZ6pJa9qfif10t11PBzypNUE47nh6KUQS3g9OcwpJJgzTJDEJbUZIV4hCTC2vSzcCUQYqxRoC5Dky6N+aRiKnKXC1kl7SvbrdvXD/Va87woqwxOwCm4AC64AU1wD1rAAxhQ8AJewZv1bL1bH9bnfLRkFTvHYAHW1y8xDZqB</latexit>

Class B

<latexit sha1_base64="4JLHnXSsCQ8RokUDq8+lEiC8t7I=">AAACE3icbVDLSgMxFM3UV62vqks3waK4kDIjFV0Wu3FZwT6gHUsmk7ahmWRI7ohl6GcIbvU33IlbP8C/8BNMHwvbeiBwOOfe3MMJYsENuO63k1lZXVvfyG7mtrZ3dvfy+wd1oxJNWY0qoXQzIIYJLlkNOAjWjDUjUSBYIxhUxn7jkWnDlbyHYcz8iPQk73JKwEoPbWBPkFYEMQbfjDr5glt0J8DLxJuRApqh2sn/tENFk4hJoOM/Wp4bg58SDZwKNsq1E8NiQgekx1qWShIx46eT1CN8YpUQd5W2TwKeqH83UhIZM4wCOxkR6JtFbyz+57US6F77KZdxAkzS6aFuIjAoPK4Ah1wzCmJoCaGa26yY9okmFGxRc1cCpQZAAnMe2nRJJEc5W5G3WMgyqV8UvVLx8q5UKJ/OysqiI3SMzpCHrlAZ3aIqqiGKNHpBr+jNeXbenQ/nczqacWY7h2gOztcvZwWfAQ==</latexit>

x < 0.1

<latexit sha1_base64="YFpWR1JplGNFEdy2mLARvxwS4/A=">AAACCnicbVDLSgMxFM3UV62vqks3waK4kGFGKrpwUXDjsoLTFtqhZDKZNjSPIcmIpfQPBLf6G+7ErT/hX/gJpu0sbOuBwOGce7knJ0oZ1cbzvp3Cyura+kZxs7S1vbO7V94/aGiZKUwCLJlUrQhpwqgggaGGkVaqCOIRI81ocDvxm49EaSrFgxmmJOSoJ2hCMTJWCp5uPNfvliue600Bl4mfkwrIUe+WfzqxxBknwmCGtG77XmrCEVKGYkbGpU6mSYrwAPVI21KBONHhaBp2DE+sEsNEKvuEgVP178YIca2HPLKTHJm+XvQm4n9eOzPJdTiiIs0MEXh2KMkYNBJOfg5jqgg2bGgJworarBD3kULY2H7mrkRSDgyK9Hls02VcjEu2In+xkGXSuHD9qnt5X63UTvOyiuAIHIMz4IMrUAN3oA4CgAEFL+AVvDnPzrvz4XzORgtOvnMI5uB8/QIj+Zp5</latexit>

Class B

<latexit sha1_base64="4JLHnXSsCQ8RokUDq8+lEiC8t7I=">AAACE3icbVDLSgMxFM3UV62vqks3waK4kDIjFV0Wu3FZwT6gHUsmk7ahmWRI7ohl6GcIbvU33IlbP8C/8BNMHwvbeiBwOOfe3MMJYsENuO63k1lZXVvfyG7mtrZ3dvfy+wd1oxJNWY0qoXQzIIYJLlkNOAjWjDUjUSBYIxhUxn7jkWnDlbyHYcz8iPQk73JKwEoPbWBPkFYEMQbfjDr5glt0J8DLxJuRApqh2sn/tENFk4hJoOM/Wp4bg58SDZwKNsq1E8NiQgekx1qWShIx46eT1CN8YpUQd5W2TwKeqH83UhIZM4wCOxkR6JtFbyz+57US6F77KZdxAkzS6aFuIjAoPK4Ah1wzCmJoCaGa26yY9okmFGxRc1cCpQZAAnMe2nRJJEc5W5G3WMgyqV8UvVLx8q5UKJ/OysqiI3SMzpCHrlAZ3aIqqiGKNHpBr+jNeXbenQ/nczqacWY7h2gOztcvZwWfAQ==</latexit>

Class B

<latexit sha1_base64="4JLHnXSsCQ8RokUDq8+lEiC8t7I=">AAACE3icbVDLSgMxFM3UV62vqks3waK4kDIjFV0Wu3FZwT6gHUsmk7ahmWRI7ohl6GcIbvU33IlbP8C/8BNMHwvbeiBwOOfe3MMJYsENuO63k1lZXVvfyG7mtrZ3dvfy+wd1oxJNWY0qoXQzIIYJLlkNOAjWjDUjUSBYIxhUxn7jkWnDlbyHYcz8iPQk73JKwEoPbWBPkFYEMQbfjDr5glt0J8DLxJuRApqh2sn/tENFk4hJoOM/Wp4bg58SDZwKNsq1E8NiQgekx1qWShIx46eT1CN8YpUQd5W2TwKeqH83UhIZM4wCOxkR6JtFbyz+57US6F77KZdxAkzS6aFuIjAoPK4Ah1wzCmJoCaGa26yY9okmFGxRc1cCpQZAAnMe2nRJJEc5W5G3WMgyqV8UvVLx8q5UKJ/OysqiI3SMzpCHrlAZ3aIqqiGKNHpBr+jNeXbenQ/nczqacWY7h2gOztcvZwWfAQ==</latexit>

y < 0.1

<latexit sha1_base64="fyKJBHUafk6ioqy9aXrjP1VlZEc=">AAACCnicbVDLSgMxFM34rPVVdekmWBQXUmakogsXBTcuKzhtoR1KJpNpQ/MYkowwDP0Dwa3+hjtx60/4F36CaTsL23ogcDjnXu7JCRNGtXHdb2dldW19Y7O0Vd7e2d3brxwctrRMFSY+lkyqTog0YVQQ31DDSCdRBPGQkXY4upv47SeiNJXi0WQJCTgaCBpTjIyV/OzWrXn9StWtuVPAZeIVpAoKNPuVn14kccqJMJghrbuem5ggR8pQzMi43Es1SRAeoQHpWioQJzrIp2HH8NQqEYylsk8YOFX/buSIa53x0E5yZIZ60ZuI/3nd1MQ3QU5Fkhoi8OxQnDJoJJz8HEZUEWxYZgnCitqsEA+RQtjYfuauhFKODAr1RWTTpVyMy7Yib7GQZdK6rHn12tVDvdo4K8oqgWNwAs6BB65BA9yDJvABBhS8gFfw5jw7786H8zkbXXGKnSMwB+frFyWfmno=</latexit>

Class B

<latexit sha1_base64="4JLHnXSsCQ8RokUDq8+lEiC8t7I=">AAACE3icbVDLSgMxFM3UV62vqks3waK4kDIjFV0Wu3FZwT6gHUsmk7ahmWRI7ohl6GcIbvU33IlbP8C/8BNMHwvbeiBwOOfe3MMJYsENuO63k1lZXVvfyG7mtrZ3dvfy+wd1oxJNWY0qoXQzIIYJLlkNOAjWjDUjUSBYIxhUxn7jkWnDlbyHYcz8iPQk73JKwEoPbWBPkFYEMQbfjDr5glt0J8DLxJuRApqh2sn/tENFk4hJoOM/Wp4bg58SDZwKNsq1E8NiQgekx1qWShIx46eT1CN8YpUQd5W2TwKeqH83UhIZM4wCOxkR6JtFbyz+57US6F77KZdxAkzS6aFuIjAoPK4Ah1wzCmJoCaGa26yY9okmFGxRc1cCpQZAAnMe2nRJJEc5W5G3WMgyqV8UvVLx8q5UKJ/OysqiI3SMzpCHrlAZ3aIqqiGKNHpBr+jNeXbenQ/nczqacWY7h2gOztcvZwWfAQ==</latexit>

y < 0.4

<latexit sha1_base64="FnzyTBSQWwRSvSQcUCsGhlQg7oc=">AAACCnicbVDLSgMxFM34rPVVdekmWBQXUmakogsXBTcuKzhtoR1KJpNpQ/MYkowwDP0Dwa3+hjtx60/4F36CaTsL23ogcDjnXu7JCRNGtXHdb2dldW19Y7O0Vd7e2d3brxwctrRMFSY+lkyqTog0YVQQ31DDSCdRBPGQkXY4upv47SeiNJXi0WQJCTgaCBpTjIyV/OzWrdX7lapbc6eAy8QrSBUUaPYrP71I4pQTYTBDWnc9NzFBjpShmJFxuZdqkiA8QgPStVQgTnSQT8OO4alVIhhLZZ8wcKr+3cgR1zrjoZ3kyAz1ojcR//O6qYlvgpyKJDVE4NmhOGXQSDj5OYyoItiwzBKEFbVZIR4ihbCx/cxdCaUcGRTqi8imS7kYl21F3mIhy6R1WfPqtauHerVxVpRVAsfgBJwDD1yDBrgHTeADDCh4Aa/gzXl23p0P53M2uuIUO0dgDs7XLyqFmn0=</latexit>

x < 0.4

<latexit sha1_base64="zCb+Z+6iPOi9hddD/kvGik6XFAw=">AAACCnicbVDLSgMxFM3UV62vqks3waK4kGFGKrpwUXDjsoLTFtqhZDKZNjSPIcmIpfQPBLf6G+7ErT/hX/gJpu0sbOuBwOGce7knJ0oZ1cbzvp3Cyura+kZxs7S1vbO7V94/aGiZKUwCLJlUrQhpwqgggaGGkVaqCOIRI81ocDvxm49EaSrFgxmmJOSoJ2hCMTJWCp5uPLfaLVc815sCLhM/JxWQo94t/3RiiTNOhMEMad32vdSEI6QMxYyMS51MkxThAeqRtqUCcaLD0TTsGJ5YJYaJVPYJA6fq340R4loPeWQnOTJ9vehNxP+8dmaS63BERZoZIvDsUJIxaCSc/BzGVBFs2NAShBW1WSHuI4Wwsf3MXYmkHBgU6fPYpsu4GJdsRf5iIcukceH6VffyvlqpneZlFcEROAZnwAdXoAbuQB0EAAMKXsAreHOenXfnw/mcjRacfOcQzMH5+gUo35p8</latexit>

x < 0.3

<latexit sha1_base64="rhjLcxrWiKVsB5Jm5u3BnoLMr5o=">AAACCnicbVDLSgMxFM34rPVVdekmWBQXMsxoRRcuCm5cVnDaQjuUTCbThuYxJBmxlP6B4FZ/w5249Sf8Cz/BtJ2FbT0QOJxzL/fkRCmj2njet7O0vLK6tl7YKG5ube/slvb261pmCpMASyZVM0KaMCpIYKhhpJkqgnjESCPq3479xiNRmkrxYAYpCTnqCppQjIyVgqcbz73olMqe600AF4mfkzLIUeuUftqxxBknwmCGtG75XmrCIVKGYkZGxXamSYpwH3VJy1KBONHhcBJ2BI+tEsNEKvuEgRP178YQca0HPLKTHJmenvfG4n9eKzPJdTikIs0MEXh6KMkYNBKOfw5jqgg2bGAJworarBD3kELY2H5mrkRS9g2K9Fls02VcjIq2In++kEVSP3f9int5XylXT/KyCuAQHIFT4IMrUAV3oAYCgAEFL+AVvDnPzrvz4XxOR5ecfOcAzMD5+gUnPZp7</latexit>

Class A

<latexit sha1_base64="FnbvP1hF2fkyWUxT10sIWgDtEaY=">AAACE3icbVDLSgMxFM3UV62vqks3waK4kDIjFV1WunFZwT6gHUsmk7ahmWRI7ohl6GcIbvU33IlbP8C/8BNMHwvbeiBwOOfe3MMJYsENuO63k1lZXVvfyG7mtrZ3dvfy+wd1oxJNWY0qoXQzIIYJLlkNOAjWjDUjUSBYIxhUxn7jkWnDlbyHYcz8iPQk73JKwEoPbWBPkFYEMQbfjDr5glt0J8DLxJuRApqh2sn/tENFk4hJoOM/Wp4bg58SDZwKNsq1E8NiQgekx1qWShIx46eT1CN8YpUQd5W2TwKeqH83UhIZM4wCOxkR6JtFbyz+57US6F77KZdxAkzS6aFuIjAoPK4Ah1wzCmJoCaGa26yY9okmFGxRc1cCpQZAAnMe2nRJJEc5W5G3WMgyqV8UvVLx8q5UKJ/OysqiI3SMzpCHrlAZ3aIqqiGKNHpBr+jNeXbenQ/nczqacWY7h2gOztcvZWKfAA==</latexit>

Class B

<latexit sha1_base64="4JLHnXSsCQ8RokUDq8+lEiC8t7I=">AAACE3icbVDLSgMxFM3UV62vqks3waK4kDIjFV0Wu3FZwT6gHUsmk7ahmWRI7ohl6GcIbvU33IlbP8C/8BNMHwvbeiBwOOfe3MMJYsENuO63k1lZXVvfyG7mtrZ3dvfy+wd1oxJNWY0qoXQzIIYJLlkNOAjWjDUjUSBYIxhUxn7jkWnDlbyHYcz8iPQk73JKwEoPbWBPkFYEMQbfjDr5glt0J8DLxJuRApqh2sn/tENFk4hJoOM/Wp4bg58SDZwKNsq1E8NiQgekx1qWShIx46eT1CN8YpUQd5W2TwKeqH83UhIZM4wCOxkR6JtFbyz+57US6F77KZdxAkzS6aFuIjAoPK4Ah1wzCmJoCaGa26yY9okmFGxRc1cCpQZAAnMe2nRJJEc5W5G3WMgyqV8UvVLx8q5UKJ/OysqiI3SMzpCHrlAZ3aIqqiGKNHpBr+jNeXbenQ/nczqacWY7h2gOztcvZwWfAQ==</latexit>

Class B

<latexit sha1_base64="4JLHnXSsCQ8RokUDq8+lEiC8t7I=">AAACE3icbVDLSgMxFM3UV62vqks3waK4kDIjFV0Wu3FZwT6gHUsmk7ahmWRI7ohl6GcIbvU33IlbP8C/8BNMHwvbeiBwOOfe3MMJYsENuO63k1lZXVvfyG7mtrZ3dvfy+wd1oxJNWY0qoXQzIIYJLlkNOAjWjDUjUSBYIxhUxn7jkWnDlbyHYcz8iPQk73JKwEoPbWBPkFYEMQbfjDr5glt0J8DLxJuRApqh2sn/tENFk4hJoOM/Wp4bg58SDZwKNsq1E8NiQgekx1qWShIx46eT1CN8YpUQd5W2TwKeqH83UhIZM4wCOxkR6JtFbyz+57US6F77KZdxAkzS6aFuIjAoPK4Ah1wzCmJoCaGa26yY9okmFGxRc1cCpQZAAnMe2nRJJEc5W5G3WMgyqV8UvVLx8q5UKJ/OysqiI3SMzpCHrlAZ3aIqqiGKNHpBr+jNeXbenQ/nczqacWY7h2gOztcvZwWfAQ==</latexit>

y < 0.6

<latexit sha1_base64="hjQV6e5pkTWs1yY7qFFShaoXjSU=">AAACCnicbVDLSsNAFJ3UV62vqks3waK4kJBIfSxcFNy4rGDaQhvKZDJph84jzEyEEPoHglv9DXfi1p/wL/wEp20WtvXAwOGce7lnTphQorTrflulldW19Y3yZmVre2d3r7p/0FIilQj7SFAhOyFUmBKOfU00xZ1EYshCitvh6G7it5+wVETwR50lOGBwwElMENRG8rNb17nqV2uu405hLxOvIDVQoNmv/vQigVKGuUYUKtX13EQHOZSaIIrHlV6qcALRCA5w11AOGVZBPg07tk+MEtmxkOZxbU/Vvxs5ZEplLDSTDOqhWvQm4n9eN9XxTZATnqQaczQ7FKfU1sKe/NyOiMRI08wQiCQxWW00hBIibfqZuxIKMdIwVOeRSZcyPq6YirzFQpZJ68Lx6s7lQ73WOC3KKoMjcAzOgAeuQQPcgybwAQIEvIBX8GY9W+/Wh/U5Gy1Zxc4hmIP19QstyZp/</latexit>
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Trees — a pictorial introduction (III)
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Trees — a pictorial introduction (IV)

Classification trees mimic some decision making processes. For example, the
following decision tree is used by A&E doctors to decide what bed type to assign:

ST segment changes?

Chief complaint of chest 

pain?

Coronary Care Unit

Regular Nursing 

Bed

Any one other factor?

(NTG, MI, ST ⬄, ST ⇳, T)

Regular Nursing 

Bed

Coronary Care Unit
Y

N

N

N
Y

Y

This perhaps makes them popular for the feeling of interpretability and of being
like a data-learned expert system.
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Trees — a pictorial introduction (V)

Figure 1: From A Probabilistic Theory of Pattern Recognition (1996).
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Trees

A tree is a data structure representing a partition of feature space achieved by
recursive splitting. Only binary trees (ie splits into two parts) usually considered.

Nomenclature:

• Root node: top of the tree, represents all of X
• Node: some subset of X resulting from earlier splits

• Left/right child: each half of a split, creating a partition of a node

• Leaf node: a node which has no further splits applied

• Depth: length of path from the root node to reach this node

• Height: maximum depth among all nodes in the tree
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Tree challenges

1 if xi ̸= xj ∀ i ̸= j then can partition every observation into its own region:
over-fitting?

2 infinitely many trees give identical training error (including test error for
hold-out) when feature space continuous.

3 assume growth to fixed height L, =⇒
∑L−1

ℓ=0 2ℓ = 2L − 1 nodes, each
choosing among d variables.

∴ joint optimisation requires O
(
d(2L − 1)

)
operations per iteration of

optimisation.

Finding optimal tree is NP-complete! (Hyafil and Rivest, 1976)
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Binary tree notation

LetR(ℓ)
j denote the region specified by the j-th node at depth ℓ, for ℓ ∈ {1, 2, . . . }

and j ∈ {0, . . . , 2ℓ − 1}.

NB index j from 0 =⇒ represent with binary expansion. ie

510 ≡ 1012 =⇒ R(4)
5 ≡ R0101

• Number of digits = ℓ
• Binary value = j

=⇒ descendents of node identifiable as start with same binary sequence.
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Binary tree notation
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Binary tree notation: binary expansion indexing
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Binary tree notation: tree paths

Path to depth ℓ denoted vector

τ ℓ = (τℓ1, . . . , τℓℓ) τℓi ∈ {0, 1}

Moving from node at depth i− 1 to i:

• τℓi = 0 take left branch;
• τℓi = 1 take right branch.

Rτ ℓ
defines region reached along that path, where τ ℓ matches binary expansion

indexing.

SplitRτ ℓ
by obvious extension intoRτ ℓ0 andRτ ℓ1, with

Rτ ℓ0 ∩Rτ ℓ1 = ∅ andRτ ℓ0 ∪Rτ ℓ1 = Rτ ℓ
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Binary tree notation: axis parallel splits

Split regionR on dimension i at split value s by,

←−X (R, i, s) := {x ∈ R : xi ≤ s}

−→X (R, i, s) := {x ∈ R : xi > s}

Then, takingR∅ := X , recursively define,

Rτ ℓ0 :=
←−X (Rτ ℓ

, iτ ℓ
, sτ ℓ

)

Rτ ℓ1 :=
−→X (Rτ ℓ

, iτ ℓ
, sτ ℓ

)

Tree fully defined by split indices, iτ ℓ
, and values, sτ ℓ

Collection T , # nodes |T |, # leaves ∥T ∥Λ
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CART (Classification And Regression Trees) Breiman et al. (1984)

Corresponding data notation …

Non-calligraphic versions of X andR, X and R, denote observations in region:

←−
X (R, i, s) :=

{
(x, y) : (x, y) ∈ D, x ∈ ←−X (R, i, s)

}
Rτ ℓ0 :=

←−
X (Rτ ℓ

, iτ ℓ
, sτ ℓ

)

Similarly
−→
X and Rτ ℓ1
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CART (Classification And Regression Trees) Breiman et al. (1984)

Initialise: T = ∅, S = {τ 1 = (0), τ 1 = (1)}

Repeat: remove first τ ℓ ∈ S and for this node, solve to find iτ ℓ
and sτ ℓ

as,

arg min
i,s

[
C

(←−
X (Rτ ℓ

, i, s)
)

+ C
(−→

X (Rτ ℓ
, i, s)

)]
subject to |←−X (Rτ ℓ

, i, s)| > 0 and |−→X (Rτ ℓ
, i, s)| > 0, where C(·) a cost function.

• No split satisfies constraint? Move to next index in S.
• ∃ split satisfying constraint? Check stopping criterion:

• the stopping criterion is not triggered, then:
• (iτ ℓ , sτ ℓ ) is added to T ; and
• τ ℓ+1 = (τℓ1, . . . , τℓℓ, 0) and τ ℓ+1 = (τℓ1, . . . , τℓℓ, 1) are added to S.

• the stopping criterion is triggered then discard iτ ℓ
and sτ ℓ

, resulting inRτ ℓ

becoming a leaf on that branch.

Continue until S empty.
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Cost functions

Trees make same prediction for all observations in given region: cost function
measures inhomogeneity of a region.

• Mean square error (regression),

C(R) :=
∑

(x,y)∈R

(y − ȳ)2

where ȳ = 1
|R|

∑
(x,y)∈R y

• Misclassification rate (classification)

C(R) :=
∑

(x,y)∈R

1(y ̸= ŷ)

where ŷ is the most frequently occurring label in the set R.
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Cost functions

• Entropy/deviance (classification)

C(R) :=
G∑

g=1
p̂g log p̂g

where p̂g is the empirical proportion of label g in the set R.

• Gini index (classification)

C(R) :=
G∑

g=1
p̂g(1− p̂g)

where p̂g is the empirical proportion of label g in the set R.



Academy of PhD Training in Statistics: Statistical Machine Learning — Trees, Forests & Boosting

Stopping criterion

Grow a tree until every leaf contains single observation? Massive overfitting!

Possible stopping rules:

• Impose complexity parameter, specifying minimum amount a split must
reduce cost.

• Apriori specify height for the tree, any split resulting in nodes with depth
exceeding height is prevented.

• Require minimum number of observations falling inside a node.

All these are supported by rpart, the main decision tree function/package in R.

Complexity parameter seems most well founded perhaps?
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Stopping criterion: problem
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Pruning

Alternative approach: grow a big tree anyway, then prune the branches back!

In other words, identify one or more non-leaf nodes to remove all descendents
from, turning them into leaf nodes.

Pruning T back to node index τ ℓ is defined by:

ρ(T , τ ℓ) := T \ {(iϵk
, sϵk

) : k ≥ ℓ and τℓi = ϵki ∀ i ∈ {1, . . . , ℓ}}

Cost-complexity pruning: T0 full tree. Recursively prune Ti to Ti+1 = ρ(Ti, τ ℓ) by
solving:

τ ℓ = arg min
ϵk

Êrr(ρ(Ti, ϵk))− Êrr(Ti)
∥Ti∥Λ − ∥ρ(Ti, ϵk)∥Λ

Gives sequence of trees T0, T1, . . .. Select one using held-out data.
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Pruning as regularisation

Note, reduction in error from a single pruning is:

αi = Êrr(ρ(Ti, τ ℓ))− Êrr(Ti)
∥Ti∥Λ − ∥ρ(Ti, τ ℓ)∥Λ

=⇒ Êrr(ρ(Ti, τ ℓ)) + αi∥ρ(Ti, τ ℓ)∥Λ = Êrr(Ti) + αi∥Ti∥Λ

∴ defines regularised path through tree space!
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Summary

Pros

• Very flexible model

• Yet still quite interpretable

• Computationally much more tractable than local methods

Cons

• Struggle to represent additive relationships, so can underperform linear
models in simple settings

• Need to tune through pruning and optimal tree unachievable

• Tends to be a very high variance model!

Example in notes
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Bagging (Breiman, 1996)

“Bagging” is an abbreviation of Bootstrap AGGregatING.

f̂(· | D) model (eg trees) fitted to data set D (call this the base learner).

f̂ turned into bagged estimator by repeatedly fitting to bootstrap resamples of
data, then take average.

Draw B samples size |D| with replacement from D, D⋆1, . . . ,D⋆B. Then,

f̂bag(x) := 1
B

B∑
b=1

f̂(x | D⋆b)

f̂bag(x) = EDn

[
f̂(x |Dn)

]
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Why bagging?

EDn

[(
y − f̂(x |Dn)

)2
]

= y2 − 2y EDn

[
f̂(x |Dn)

]
+ EDn

[
f̂(x |Dn)2

]

≥ y2 − 2y EDn

[
f̂(x |Dn)

]
+ EDn

[
f̂(x |Dn)

]2

=
(
y − EDn

[
f̂(x |Dn)

])2

=
(
y − f̂bag(x)

)2

=⇒ EY | X=x

[
EDn

[(
Y − f̂(x |Dn)

)2
]]
≥ EY | X=x

[(
Y − f̂bag(x)

)2
]

Note that EDn

[
f̂(x |Dn)2

]
− EDn

[
f̂(x |Dn)

]2
= VarDn

(
f̂(x |Dn)

)
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Bagging benefits
• Biggest gains when base learner variance high

• eg Trees!

• Grow large trees with minimal (or no) pruning. Relies on bagging procedure
directly to avoid overfit.

• or; prune each tree as was described in the last lecture. Note: now we don’t
need to do cross-validation, because we know on average 36.8% of original data
will not be in bootstrap sample so can be used as a test set for pruning.

• Note can use for any model, including say knn

• May be additional theory involved

• Hall and Samworth (2005) show bootstrap resample size must be at most 69%

• Full theoretical gain won’t be achieved since we’re only approximating EDn

by bootstrapping
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Bootstrap and Trees — bootstrap split locations
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Bootstrap and Trees — true iid split locations
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Bootstrap and Trees — split location densities
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Bootstrap and Trees — MSE densities
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Bagged classification

Then, to classify a new observation x:

f̂bag(x) = arg max
j

B∑
b=1

1

(
arg max

k

(
f̂k(x | D⋆b)

)
= j

)

This chooses the class label for which the most bootstrapped trees ‘voted’.
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Bagging class probabilities

Care is required when constructing a probability estimate. Is this a good idea?

p̂bagj (x) ?:= 1
B

B∑
b=1

1

(
arg max

k

(
f̂k(x | D⋆b)

)
= j

)

No! This is proportion of trees voting for given class.

If pℓ(x) = 0.8, say, and all bootstrapped trees correctly identify Cℓ as most likely
response then above estimates the probability as 1!

Instead, directly average tree output probabilities

p̂bagj (x) := 1
B

B∑
b=1

f̂j(x | D⋆b)



Academy of PhD Training in Statistics: Statistical Machine Learning — Trees, Forests & Boosting

Bagging class probabilities

Care is required when constructing a probability estimate. Is this a good idea?

p̂bagj (x) ?:= 1
B

B∑
b=1

1

(
arg max

k

(
f̂k(x | D⋆b)

)
= j

)

No! This is proportion of trees voting for given class.

If pℓ(x) = 0.8, say, and all bootstrapped trees correctly identify Cℓ as most likely
response then above estimates the probability as 1!

Instead, directly average tree output probabilities

p̂bagj (x) := 1
B

B∑
b=1

f̂j(x | D⋆b)



Academy of PhD Training in Statistics: Statistical Machine Learning — Trees, Forests & Boosting

Bagging class probabilities

Care is required when constructing a probability estimate. Is this a good idea?

p̂bagj (x) ?:= 1
B

B∑
b=1

1

(
arg max

k

(
f̂k(x | D⋆b)

)
= j

)

No! This is proportion of trees voting for given class.

If pℓ(x) = 0.8, say, and all bootstrapped trees correctly identify Cℓ as most likely
response then above estimates the probability as 1!

Instead, directly average tree output probabilities

p̂bagj (x) := 1
B

B∑
b=1

f̂j(x | D⋆b)



Academy of PhD Training in Statistics: Statistical Machine Learning — Trees, Forests & Boosting

Out of bag error

Not every observation included in every bootstrap sample:

P
(
(xi, yi) ∈ D⋆b

)
= 1− P

(
(xi, yi) /∈ D⋆b

)
= 1− P

(
(x⋆b

1 , y⋆b
1 ) ̸= (xi, yi) ∩ · · · ∩ (x⋆b

n , y⋆b
n ) ̸= (xi, yi)

)
= 1−

n∏
j=1

P
(
(x⋆b

j , y⋆b
j ) ̸= (xi, yi)

)
by indep sampling with replacement

= 1−
(

1− 1
n

)n

≈ 1− e−1 ≈ 0.632
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OOB
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When bagging?

Pros

• If you have a lot of data, bagging makes sense because the bootstrapped
distribution will be good approx of population distribution.

• Bagging is not restricted to trees!
• Most useful when it is desirable to reduce the variance of a predictor.

• under the (inaccurate) independence assumption, variance will reduce by a
factor of ∼ 1/B for B bootstrap resamples.

• We can estimate the error in bagging without needing cross-validation, since
any given observation will not be used in around 36.8% of the models (some
care needed: see ESL, p.251). “Out Of Bag” (OOB) error estimation (cf 3-CV)

Cons

• We lose interpretability as the final estimate is not a tree.
• Computational cost is multiplied by a factor of at least B.
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Silk purse or sow’s ear?

“Bagging goes a ways towardmaking a silk purse out of a sow’s ear, especially
if the sow’s ear is twitchy. It is a relatively easy way to improve an existing
method, since all that needs adding is a loop in front that selects the bootstrap
sample and sends it to the procedure and a back end that does the aggregation.
What one loses, with the trees, is a simple and interpretable structure. What
one gains is increased accuracy.”

— Breiman (1996), p.137
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Random forests

Bagging improved on single CART model by reducing the variance through
resampling. But, in fact the bagged models are still quite correlated.

=⇒ less variance reduction achieved by averaging.

Can we make them more independent in order to produce a better variance
reduction?

Random forests achieve this by not only resampling observations, but by
restricting the model to random subspaces, X ′ ⊂ X .

=⇒ Random forests = Bagging + Random Subspaces
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Random forest algorithm

1 Take a bootstrap resample D⋆ of the data, as for bagging.
2 Fit the CART algorithm to bootstrap sample, but each time a split is made,
only optimise over a subset of m < d variables.
• Perhaps prune individual trees
• Many algoriths (eg ranger in R) grow to purity without pruning

3 Average the prediction of all B trees

The random subspaces causes less correlation in the trees … combined with
bagging this means the trees are a lot less correlated and variance is reduced
substantially.
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Breiman (2001) Theory

1 As number of trees B →∞, forest converges to limiting value of
generalisation error for base learners ( =⇒ won’t overfit by adding trees)

2 Generalisation error asymptotically bounded by

E ≤ ρ̄(1− S2)
S2

where S is how ‘strong’, and ρ̄ is how correlated, randomised base learner
models in the forest are.

Aside: Really? Consider binary classification Assume at feature value x we have
B independent classifiers, each with a 0-1 loss of 0.4.

=⇒ distribution of number of votes for the correct label is Binomial(B, 0.6).
Then,

P(> B/2 votes for correct class)→ 1 as B →∞
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Variable importance from forests (I)

Option 1

For each feature x·j , j = 1, . . . , d, loop over each tree in the forest

• find all nodes that make a split on x·j

• compute the improvement in loss criterion the split causes (eg
accuracy/Gini/etc)

• sum improvements across nodes in the tree

Finally, sum improvement across all trees.

This is the method used by randomForest::varImpPlot.
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Variable importance from forests (II)

Option 2

Already discussed that bagging enables out of bag error estimation.

To compute out of bag variable importance, for each feature x·j , j = 1, . . . , d

• for each tree, take the out of bag samples, Doob, and compute the predictive
accuracy for that tree;
• next, take Doob and randomly permute all the entries for jth variable across
observations;
• predict for this permuted Doob and compute change in predictive accuracy for
that tree.

Finally average the decrease in accuracy over all trees.
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Random Forest discussion

Pros

• Inherits the advantages of bagging and trees

• Very easy to parallelise
• Has an integrated measure of variable importance
• Works well with high dimensional data
• Extensive tuning not really needed

Cons

• Often quite suboptimal for regression
• Same extrapolation issue as trees
• Memory hungry model
• Prediction slow for big ensembles
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Boosting

Q: Michael Kearns (1988): “is it possible for weak learners be combined to create a
strong learner with low bias?” He call this the “Hypothesis Boosting Problem”.

A: Yes! (Schapire, 1990) But, AdaBoost (Freund and Schapire, 1997) first
practically usable approach.

Again, build ensemble, but this time each classifier very weak and build iteratively
to improve:

F̂ (B)(x) =
B∑

b=1
αbf̂

(b)(x)

(F̂ (B) is ensemble, not CDF!)
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AdaBoost (binary classification, Y = {−1, +1})
w = (w1, . . . , wn), for each obs in D. Initialise, wi = 1/n ∀ i and f̂(x) = 0 ∀x ∈ X .
For iterations b = 1, . . . , B:

1 Fit tree to weighted dataset /w loss

f̂ (b) = arg min
f∈T(h)

∑
{i:f(xi) ̸=yi}

wi

2 Compute weighted error:

εb =
n∑

i=1
wi1

{
f̂ (b)(xi) ̸= yi

}
3 If ε ≥ 1

2 , discard f̂ (b) and terminate. Else, if ε < 1
2 , retain, set coefficient to

αb = 1
2

log
(1− ε

ε

)
and update weights: wi ←

wi exp
(
−αbf̂

(b)(xi)yi

)
2
√

ε(1− ε)
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AdaBoost (binary classification, Y = {−1, +1})

Upon termination, up to B weak learners f̂ (b) and coefficient weights αb, so full
ensemble,

F̂ (x) =
∑

b

αbf̂
(b)(x)

Scoring classifier, so sign indicates label.

Early termination due to εb ≥ 1
2 =⇒ weak learner no better than guessing, so

don’t add more weak learners.

AdaBoost aggressively drives training/apparent error to zero in O(log n)
iterations.
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Boosting = greedy forward stagewise (Friedman et al., 2000)

Set εi = yi for i ∈ {1, . . . , n}. For b = 1, . . . , B, iterate:

1 Fit a model (eg tree) f̂ (b)(·) and multiplier λb to the response ε1, . . . , εn as,

{f̂ (b)(·), λb} ← arg min
f∈T(h),λb∈R

n∑
i=1

(
εi − λbf̂

(b)(x)
)2

2 Update residuals
εi ← εi − λbf̂

(b)(x) ∀ i

Output as final boosted model

F̂ (B)(x) =
B∑

b=1
λbf̂

(b)(x)
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Gradient boosting machines (I)

Gradient descent:
θi+1 = θi − γ∇g(θ)

∣∣∣
θ=θi

=⇒ θ̂ = θ0 −
∑

γ∇g(θ)
∣∣∣
θ=θi

Very evocative of boosting!
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Gradient boosting machines (II)

E (F ) = EXY L (Y, F (X)) = EX

[
EY | X=x [L (Y, F (x))]

]

E (F (x)) := EY | XL (Y, F (x))

Do gradient descent on E (F (x)) as a function of F (x) … ie in function space.

F̂ (B+1)(x) = F̂ (B)(x)− γ∇E (F (x))
∣∣∣
F (x)=F̂ (B)(x)

Notation,

ηB(x) := ∇E (F (x))
∣∣∣
F (x)=F̂ (B)(x)

= EY | X

[
∂ L (Y, F (x))

∂ F (x)

∣∣∣∣
F (x)=F̂ (B)(x)

]
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Gradient boosting machines (III)

We’re doing boosting, not gradient descent really, so after computing gradient at
current location, compute coefficient:

αB+1 = arg min
α

EXY L
(
Y, F̂ (B)(X)− αηB(X)

)
and add f̂ (B+1)(x) = ηB(x) and αB+1 to the ensemble.

BUT we can’t compute this gradient! Compute instead:

η̂B(xi) = ∂ L (yi, F (x))
∂ F (x)

∣∣∣∣
F (x)=F̂ (B)(xi)

∀ i

and fit base learner to (−η̂B(x1), . . . ,−η̂B(xn)) ∈ Rn by ERM for square loss.
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Gradient boosting machines (IV)

In other words, add to ensemble:

f̂ (B+1) = arg min
f̂∈F ,β∈R

n∑
i=1

(
−η̂B(xi)− βf̂(xi)

)2

αB+1 = arg min
α∈R

n∑
i=1
L

(
yi, F̂ (B)(xi) + αf̂ (B+1)(xi)

)

General and powerful approach: just convex differentiable loss required, since
gradient approx by arbitrary base learner via least squares.
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