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This Section
• In-sample error estimation

• Mallows’ Cp

• Akaike Information Criterion

• Covariance penalities

• Fixed -vs- random inputs

• Cross validation estimation

• Train/Test/Validate

• LOO

• K-fold

• Recent theoretical results
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Why this matters

• Error estimation
• training/apparent error is downward biased estimate

• want to understand performance of model on future data

• Hyperparameter selection
• how do we choose k and h from last section without relying on asymptotic
theory?

• may want hyperparameter tuned to non-standard loss for which no theory

• there will by more hyperparameters to come …

• Model selection
• we may want to choose among multiple fitted models
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What do we really need

Note:

• If we want to know our likely loss on future observations, we genuinely
require a method that will produce and unbiased estimate of the
generalisation error.

• But, if we are just selecting between models/hyperparameters, we simply
need a consistent estimator which correctly orders the performance.
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In-sample estimation

May approximate the total expected in-sample loss:

Err :=
n∑

i=1
EY | X=xi

[
L(Y, gf̂ (xi))

]
︸ ︷︷ ︸

Erri

with

err :=
n∑

i=1
L(yi, gf̂ (xi))︸ ︷︷ ︸

erri

Problem: downward biased estimate.

Write: Err = err + ω, where ω is optimism of apparent error.
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In-sample estimation

• Can we estimate ω̂ ≈ ω only with training data?

• If so, then could use approximation

Êrr = err + ω̂

for error estimation, hyperparameter tuning and model selection.



Academy of PhD Training in Statistics: Statistical Machine Learning — Error Estimation and Model Selection

Mallows’ Cp (Mallows, 1973)

• Standard linear regression;
• homoskedastic Normal errors;
• (Y | X = x) ∼ N(xT β, σ2);
• squared loss.

Then, Mallows’ Cp is,

Cp :=
∑

(yi − xT
i β̂)2

σ2 − n + 2d

Usual use: variable selection, with σ2 estimated from data.
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Cp and Err

Erri = EY | X=xi

[
L(Y, gf̂ (xi))

]
= EY | X=xi

[
(Y − xT

i β̂)2
]

=
(
xT

i β − xT
i β̂
)2

+ σ2

Mallows (1973) proved it is an unbiased estimator,

Cp ≈ σ−2∑(
xT

i β − xT
i β̂
)2

=⇒ σ2Cp ≈ Err − nσ2

=⇒ ω̂ ≈ 2dσ2
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Alternative definition

Above relation leads to an alternative form:

C̃p = err + 2dσ2

Note, C̃p = σ2(Cp + n), so minimised as by model, but C̃p is direct estimator of
total loss.
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General linear estimators

A linear estimation rule is any predictor of the form:

ŷ = My

where M does not depend on y.

eg ŷ = Xβ̂

= X
[
(XT X)−1XT y

]
=
[
X(XT X)−1XT

]
y

so M = X(XT X)−1XT for standard linear regression.
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eg ŷ = Xβ̂

= X
[
(XT X)−1XT y

]
=
[
X(XT X)−1XT

]
y

so M = X(XT X)−1XT for standard linear regression.



Academy of PhD Training in Statistics: Statistical Machine Learning — Error Estimation and Model Selection

Mallows’ for linear estimators

Mallows’ can be applied to any linear estimator (Efron, 2004),

ω̂i = 2σ2Mii

=⇒ Êrr = err + 2σ2 trace(M)

trace(M) is commonly referred to as the degrees of freedom (df) (Tibshirani, 2015).
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Other linear estimators

KNN: in-sample nearest neighbour prediction of all responses is ŷ = My, where

Mij =
{ 1

k if d(xi, xj) ≤ d(xi, x(k,xi))
0 otherwise

Nadaraya-Watson: in-sample N-W prediction of all responses is ŷ = My, where

Mij =
K
(

xi−xj

h

)
∑n

ℓ=1 K
(

xi−xℓ
h

)
Others: ridge regression, lasso, group lasso, and spline smoothing (Arlot and
Bach, 2009)
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Akaike Information Criterion (AIC)

Akaike (1972) extended concept of maximum likelihood by examining maximum
of expected log-likelihood. For each model, take MLE θ̂ and compute:

EX [log fX(X | θ̂)] =
∫

X
log fX(x | θ̂)dπX = −E

(
f̂(· | θ̂)

)
then choose model maximising this.

• equivalently minimising generalisation error for log-likelihood loss in full
probabilistic model;

• equivalently minimising Erri in fixed inputs case if model doesn’t specify
distribution on predictors.
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AIC

Equivalently, maximise

EX

[
log fX(X | θ̂)

πX(X)

]
=
∫

X
log fX(x | θ̂)

πX(x)
dπX

For us, this is −E
(
f̂(· | θ̂)

)
+ E (πX) … ie negative excess risk!

Akaike (1972) derives the AIC:

AIC = −2
(

n∑
i=1

log fX(xi | θ̂)
)

+ 2d

where d is the dimension of θ
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Relation to generalisation error

AIC is an estimator of the true generalisation error (Akaike, 1974):

AIC ≈ 2nE
[
E
(
f̂(· | θ̂)

)]
ie the optimism for a log-likelihood loss is approximately d.

Care in interpretation: full probabilistic model or fixed inputs?
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Model selection -vs- prediction

• For model selection, compute AIC for candidates and selection one with
smallest AIC.

• BUT, it will not asymptotically choose ‘true’ model!

• For prediction, does choose model which offers equivalent loss to the
smallest available!

• … what we want in machine learning!

• If you are doing scientific modelling, investigate Bayesian Information
Criterion (BIC)

• In ML we would not often expect our model to represent the data generating
process.
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General covariance penalties

Efron (1986) generalised framework for analysing optimism in the apparent error
by defining q-class of losses.

A loss is said to be a q-class loss if it can be written, for some concave function
q(µ) : Y → R, as

L(y, ŷ) = q(ŷ) + dq

dµ

∣∣∣∣
µ=ŷ

(y − ŷ) − q(y)
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q-class loss (square loss)

ŷ y
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Common q-losses

Many standard losses belong to the q-class:

• squared loss (shown in plot):

q(µ) = µ(1 − µ) =⇒ L(y, ŷ) = (y − ŷ)2

• 0-1 loss:
q(µ) = min{µ, 1 − µ} =⇒ L(y, ŷ) = 1{y ̸= ŷ}

• binary cross-entropy:

q(µ) = −µ log µ − (1 − µ) log(1 − µ) =⇒ L(y, p̂) = − log p̂y

For full details see Efron (1986).
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Optimisim Theorem (Efron, 2004)

Given a loss belonging to the q-class of losses, we have that,

E[Erri] = E[erri + ωi]

where
ωi = 2Cov(λ̂i, yi)

with
λ̂i = −1

2
dq

dµ

∣∣∣∣
µ=ŷi
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Example: square loss

q(µ) = µ(1 − µ) =⇒ L(y, ŷ) = (y − ŷ)2

=⇒ λ̂i = ŷi − 1
2

=⇒ ωi = 2Cov(ŷi, yi)

• if observation influences the value the model predicts for that observation,
optimism higher

• observation is highly influential of its own prediction, then overfitting is
likely

• calculation of ωi can be very difficult or intractable (and we don’t know true
distribution of Y … Bootstrap)
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Data splitting methods

Many methods are based on splitting the available data up, using only part for
model fitting.

New Notation

Full data,

D = Dn = ((x1, y1), . . . , (xn, yn))

Subset,

DI := {(xi, yi) : i ∈ I} where I ⊂ {1, . . . , n}
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Hold-out estimation (I)

Simplest approach and theoretical analysis easy!

Create partition,

• Training, DTr

• Testing, DTe

Where Tr ∩ Te = ∅ and Tr ∪ Te = {1, . . . , n}.

Êrrho = 1
|Te|

∑
i∈Te

L(yi, f̂(xi | DTr ))
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Hold-out estimation (II)

Êrrho is an unbiased estimate for the generalisation error:

E(f̂ | DTr ) = EXY

[
L(Y, f̂(X | DTr ))

]
with standard error

ŝ :=
√√√√ 1

|Te| − 1
∑
i∈Te

(
L(yi, f̂(xi | DTr )) − Êrrho

)2

Catch: Model often refitted to whole data for production
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Hold-out CI coverage

Is just a sample size adjustment needed? Sadly not (Bates et al., 2021):

ED|Tr |D|Te|

[
Êrrho

]
= ED|Tr |

 1
|Te|

∑
i∈Te

EXY

[
L(Yi, f̂(Xi | D|Tr|))

]
= ED|Tr |

[
EXY

[
L(Yi, f̂(Xi | D|Tr

|))
]]

= Ē|Tr|

ED|Tr |D|Te|

[
ŝ2
]

= ED|Tr |

[
Var

(
Êrrho | D|Tr|

)]
= Var

(
Êrrho

)
− Var

(
ED|Tr |

[
Êrrho | D|Tr|

])
law of total variance

= ⋆
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ŝ2
]

= ED|Tr |

[
Var

(
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Var
(
Êrrho

)
= ED|Tr |D|Te|

[(
Êrrho − Ē|Tr|

)2
]

= ED|Tr |D|Te|

[((
Êrrho − Ēn

)
+
(
Ēn − Ē|Tr|

))2
]

= ED|Tr |D|Te|

[(
Êrrho − Ēn

)2
]

+ 2
(
Ē|Tr| − Ēn

) (
Ēn − Ē|Tr|

)
+
(
Ēn − Ē|Tr|

)2

= ED|Tr |D|Te|

[(
Êrrho − Ēn

)2
]

−
(
Ēn − Ē|Tr|

)2

⋆ = ED|Tr |D|Te|

[(
Êrrho − Ēn

)2
]

−
(
Ēn − Ē|Tr|

)2

︸ ︷︷ ︸
sample size bias

−Var
(
E(f̂ | DTr )

)
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)2
]

= ED|Tr |D|Te|

[((
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Êrrho − Ēn

)2
]

+ 2
(
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Êrrho − Ēn
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Train/test/validate

Hold-out ok for error estimation … model selection/hyperparameter tuning?
Need a further split! Assume θ indexes models or is a hyperparameter.

Create partition,

• Training, DTr

• Validation, DV
• Testing, DTe

Where Tr ∩ Te = ∅, Tr ∩ V = ∅, Te ∩ V = ∅ and Tr ∪ V ∪ Te = {1, . . . , n}.

θ̂ = arg min
θ

1
|V|

∑
i∈V

L(yi, f̂θ(xi | DTr ))

Êrrte = 1
|Te|

∑
i∈Te

L(yi, f̂θ̂(xi | DTr ))
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Problems

X =











0.391 0.153

0.628 0.394

.

.

.
.
.
. · · ·

−1.556 2.421











<latexit sha1_base64="smzV9tB4r4SPmkfice6wgNdAS2Y="></latexit>

Xtr =







0.391 0.153

.

.

.
.
.
. · · ·

1.385 0.629







<latexit sha1_base64="725fCkE1roecA5INi0zsp8cImLE="></latexit>

Xte =







−1.556 2.421

.

.

.
.
.
. · · ·

0.996 0.056







<latexit sha1_base64="Shp35g3q3xQK5RtK9P5V2EwqMNA="></latexit>

Xva =







0.628 0.394

.

.

.
.
.
. · · ·

−0.211 −0.729







<latexit sha1_base64="NpyPHeeSTd0jp6j4BCLzAsYLXrE="></latexit>

Fit models

Choose model/

pars

Final accuracy

estimate

Match splits with response y = (ytr, yte, yva).
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50% of data

25% of data

25% of data

Match splits with response y = (ytr, yte, yva).
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Train/test/validate problems

• Only some of the data is used in fitting, other parts never used during fit.

• Only some of data is used in evaluation (what if hard to predict observations
are by chance allocated to train/test/…)

• Again, the final error estimate will usually be conservative, since once the
best model is chosen we refit to the whole dataset and would expect slightly
improved results.

• If little data, possibly hybrid: use in-sample estimators to choose
hyperparameters and estimate error using hold-out
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Cross-validation

The “original” cross-validation is called Leave One Out (LOO).

• Splits I−i = {1, . . . , n} \ {i} for i ∈ {1, . . . , n}

• Total of n models fitted to each I−i

• Error for observation i assessed on model fitted to I−i

Overall,

Êrrloo = 1
n

n∑
i=1

L(yi, f̂(xi | DI−i))

But: computationally expensive, asymptotically equivalent to AIC.
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K-fold cross-validation

Arguably most popular form of cross validation.

Partition data into K equally sized disjoint parts, I1, . . . , IK with

Ii ∩ Ij = ∅ ∀ i ̸= j, and
K⋃

i=1
Ii = {1, . . . , n}

each fold having |Ij | = n
K observations.

(for simplicity, assume K divides n)



Academy of PhD Training in Statistics: Statistical Machine Learning — Error Estimation and Model Selection

K-fold cross-validation setup

K-fold cross validation splits data into k equally sized groups, called ‘folds’:

X =











0.391 0.153

0.628 0.394

.

.

.
.
.
. · · ·

−1.556 2.421
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X1 =







0.391 0.153

.

.

.
.
.
. · · ·

1.385 0.629
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X2 =







−1.556 2.421

.

.

.
.
.
. · · ·
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.

.

.
.
.
. · · ·
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fold 1

fold 2

fold k
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Cross-validation folds

K times we: fit on green folds, evaluate error on the held out yellow fold.

fold 1 fold 2 fold 3 fold k

fold 1 fold 2 fold 3 fold k

fold 1 fold 2 fold 3 fold k

fold 1 fold 2 fold 3 fold k
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Choice of K

• K = n (ie LOO)

• has the lowest bias, since each model is almost the same as the full data model!

• but has very high variance since all models are so highly correlated with each
other (mean of correlated variables has higher variance)

• K = 2

• has high bias, for the same reason as train/test/validate

• lower variance, as models have no data dependent correlation

K = 5 and K = 10 are common choices in the wild.

CAUTION! Time series, hidden ordering and concept drift all require careful
attention.
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Theory

• Wager (2020): Cross-validation is,
• asymptotically consistent in identifying the better performing of two models,

• biased estimate of generalisation error.

• Bates et al. (2021): Cross-validation is,
• more closely estimating expected (prediction) error, Ēn(·)

• but, confidence intervals calibrated to include E(f̂ | D), can be constructed
using nested cross validation
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Theory
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Bootstrap

You have covered in previous APTS, so we just provide definition (and a little
more in notes):

Consider data set D = ((x1, y1), . . . , (xn, yn)) and a statistic S(·) one wishes to
estimate.

To construct a bootstrap estimate of the confidence interval of the statistic S(·),
draw B new samples of size n with replacement from D, D⋆1, . . . , D⋆B and compute:

V̂ar(S(D)) = 1
B − 1

B∑
b=1

(
S(D⋆b) − S̄⋆

)2

where S̄⋆ = 1
B

∑B
b=1 S(D⋆b).
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