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This Section

¢ In-sample error estimation
* Mallows’ C,
¢ Akaike Information Criterion
e Covariance penalities
® Fixed -vs- random inputs
e Cross validation estimation
® Train/Test/Validate
* LOO

e K-fold
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® Recent theoretical results
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Why this matters

e Error estimation
® training/apparent error is downward biased estimate

e want to understand performance of model on future data
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Why this matters

e Error estimation

® training/apparent error is downward biased estimate

e want to understand performance of model on future data
e Hyperparameter selection

® how do we choose k and h from last section without relying on asymptotic
theory?

® may want hyperparameter tuned to non-standard loss for which no theory

¢ there will by more hyperparameters to come ...
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Why this matters

e Error estimation

® training/apparent error is downward biased estimate

e want to understand performance of model on future data
e Hyperparameter selection

® how do we choose k and h from last section without relying on asymptotic
theory?

® may want hyperparameter tuned to non-standard loss for which no theory
¢ there will by more hyperparameters to come ...
e Model selection

® we may want to choose among multiple fitted models
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What do we really need

Note:

¢ If we want to know our likely loss on future observations, we genuinely
require a method that will produce and unbiased estimate of the
generalisation error.
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What do we really need

Note:

¢ If we want to know our likely loss on future observations, we genuinely
require a method that will produce and unbiased estimate of the
generalisation error.

® But, if we are just selecting between models/hyperparameters, we simply
need a consistent estimator which correctly orders the performance.
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In-sample estimation

May approximate the total expected in-sample loss:

Err := XR:EY‘X:XL. {E(Y’ gf(Xz'))]
=1

Err;
with

err := Zﬁ yz,gf(xz))

i=1 N——
err;
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In-sample estimation

May approximate the total expected in-sample loss:

Err := XR:EY‘X:XL. {E(Y’ gf(Xz'))]
=1

Err;
with
err := Y L(y;, 95(xi))

err;

Problem: downward biased estimate.
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Write: Err = err + w, where w is optimism of apparent error.
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In-sample estimation

e Can we estimate & =~ w only with training data?

e If so, then could use approximation
Err = err + @

for error estimation, hyperparameter tuning and model selection.
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Mallows’ C,, (Mallows, 1973)

Standard linear regression;
homoskedastic Normal errors;
(Y]X = x) ~ N(xTB,0%);
squared loss.

Then, Mallows’ C,, is,
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Mallows’ C,, (Mallows, 1973)

Standard linear regression;
homoskedastic Normal errors;
(Y]X = x) ~ N(xTB,0%);
squared loss.

Then, Mallows’ C,, is,

Cpi==2 10 pyod

Usual use: variable selection, with o2 estimated from data.
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C, and Err

Err; = By | x—, [ﬁ(Y’ gf(xi))]
= Ey|X:xi {(Y - X;[B)ﬂ

A

= ('8 -xTB) +o°
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C, and Err

Mallows (1973) proved it is an unbiased estimator,

Cp~ o2 Z (XZT,B — X?,B)Z
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C, and Err

Mallows (1973) proved it is an unbiased estimator,

Q

oY (xI8-xIB)

2

Cp
i 0'2Cp ~ Err — no
— &~ 2do?
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Alternative definition

Above relation leads to an alternative form:

Cp = err + 2do?

Note, C, = 0%(C}, + n), so minimised as by model, but C,, is direct estimator of
total loss.
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General linear estimators

A linear estimation rule is any predictor of the form:

y =My

where M does not depend on y.
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General linear estimators

A linear estimation rule is any predictor of the form:

y =My

where M does not depend on y.

A

eg y=XpB
=X [(X"X)"'Xy]
= [xx™x)7X|y

so M = X(X”X)~'XT for standard linear regression.
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Mallows’ for linear estimators

Mallows’ can be applied to any linear estimator (Efron, 2004),

(f]z‘ = QO'QMZ'Z‘

— Err = err + 202 trace(M)
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Mallows’ for linear estimators

Mallows’ can be applied to any linear estimator (Efron, 2004),

(f]z‘ = QO'QMZ'Z‘

— Err = err + 202 trace(M)

trace(M) is commonly referred to as the degrees of freedom (df) (Tibshirani, 2015).
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Other linear estimators

KNN: in-sample nearest neighbour prediction of all responses is y = My, where

= % if d(xi7xj) < d(xivx(k,xi))
I 0 otherwise
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Other linear estimators

KNN: in-sample nearest neighbour prediction of all responses is y = My, where

Mij _ % ifd(Xi,Xj) < d(Xi,X(k’xi))
0 otherwise

Nadaraya-Watson: in-sample N-W prediction of all responses is y = My, where

M;j = K<Xihxj_)
pIy (thxe>
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Other linear estimators

KNN: in-sample nearest neighbour prediction of all responses is y = My, where

Mij _ % ifd(Xi,Xj) < d(Xi,X(k’xi))
0 otherwise

Nadaraya-Watson: in-sample N-W prediction of all responses is y = My, where

Mij = nK <Xihx.j_)
Y K (thxe>

Others: ridge regression, lasso, group lasso, and spline smoothing (Arlot and
Bach, 2009)
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Akaike Information Criterion (AIC)

Akaike (1972) extended concept of maximum likelihood by examining maximum
of expected log-likelihood. For each model, take MLE 8 and compute:

Exllog fx(X|6)] = [ log fx(z| B)dnx =& ((-10))

then choose model maximising this.

¢ equivalently minimising generalisation error for log-likelihood loss in full
probabilistic model;

e equivalently minimising Err; in fixed inputs case if model doesn’t specify
distribution on predictors.
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AIC

Equivalently, maximise

[log Ix( ] / log fX )dT('X

For us, thisis —& (f( | 9)) + & (7rx) ... ie negative excess risk!
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AIC

Equivalently, maximise
X 0) 0
E [1 fx(X| ] / log f X |

For us, thisis —& (f( | 9)) + & (7rx) ... ie negative excess risk!

Akaike (1972) derives the AIC:

AIC = —2 (znj log fx (x| é)) +2d

i=1

where d is the dimension of 8
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Relation to generalisation error

AIC is an estimator of the true generalisation error (Akaike, 1974):

AIC ~ 2nE [€ (f(-]0))]

ie the optimism for a log-likelihood loss is approximately d.

Care in interpretation: full probabilistic model or fixed inputs?
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Model selection -vs- prediction

¢ For model selection, compute AIC for candidates and selection one with
smallest AIC.

e BUT, it will not asymptotically choose ‘true’ model!
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Model selection -vs- prediction

¢ For model selection, compute AIC for candidates and selection one with
smallest AIC.

e BUT, it will not asymptotically choose ‘true’ model!
e For prediction, does choose model which offers equivalent loss to the
smallest available!

® ... what we want in machine learning!
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Model selection -vs- prediction

¢ For model selection, compute AIC for candidates and selection one with
smallest AIC.

e BUT, it will not asymptotically choose ‘true’ model!

e For prediction, does choose model which offers equivalent loss to the
smallest available!

® ... what we want in machine learning!
¢ Ifyou are doing scientific modelling, investigate Bayesian Information
Criterion (BIC)

¢ In ML we would not often expect our model to represent the data generating
process.
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General covariance penalties

Efron (1986) generalised framework for analysing optimism in the apparent error
by defining ¢-class of losses.

A loss is said to be a g-class loss if it can be written, for some concave function
q(p) : Y = R, as
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g-class loss (square loss)
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Common ¢-losses

Many standard losses belong to the ¢-class:

e squared loss (shown in plot):

A

q(p) = p(l —p) = Ly, 9) =y —19)°
e (0-1loss:
q(p) = min{p, 1 — p}y = L(y,9) = Yy # §}
® binary cross-entropy:
q(p) = —plogp — (1 — p)log(l — ) = L(y,p) = —logp,

For full details see Efron (1986).
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Optimisim Theorem (Efron, 2004)

Given a loss belonging to the ¢-class of losses, we have that,

E[Err;] = Elerr; + w;]

where
w; = 2COV()\1', yi)

with

34>
Il

|

|

|
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Example: square loss

N

= w; = 2Cov(%i, yi)

e if observation influences the value the model predicts for that observation,
optimism higher

e observation is highly influential of its own prediction, then overfitting is
likely

e calculation of w; can be very difficult or intractable (and we don’t know true
distribution of Y ... Bootstrap)
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Data splitting methods

Many methods are based on splitting the available data up, using only part for
model fitting.

New Notation

Full data,

D=D,=((x1,41),---5(Xn:Yn))

Subset,

Dz :={(xi,yi) 1 € Z} where ZcC{l,...,n}

y_ P
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Hold-out estimation (I)

Simplest approach and theoretical analysis easy!
Create partition,

¢ Training, D7,
e Testing, D7,

Where 7, N T. =0and 7, UT. = {1,...,n}.
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Hold-out estimation (I)

Simplest approach and theoretical analysis easy!
Create partition,

¢ Training, D7,
e Testing, D7,

Where 7, N T. =0and 7, UT. = {1,...,n}.

Effho = — > L(yi f(x;| D7)
|T| i€Te '

y_ P
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Hold-out estimation (II)

Erry,, is an unbiased estimate for the generalisation error:

£(f D7) = Exy [L(Y, f(X| D))

with standard error

i€Te

" J |T|11 > (£ foi D)) ~ Bty
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Hold-out estimation (II)

Erry,, is an unbiased estimate for the generalisation error:

£(f D7) = Exy [L(Y, f(X| D))

with standard error

o \l ITelll > (£ fxi | D) —Er\fho)2

i€Te

Catch: Model often refitted to whole data for production
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Hold-out CI coverage

Is just a sample size adjustment needed? Sadly not (Bates et al., 2021):

EDyr, 1Dy [fr\rho} = Epyr, ITV ;EXY[ (Y5, f(Xi | Dy ))}

= Ep,,, [Exy [0 7| D))

= &7,
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Hold-out CI coverage

Is just a sample size adjustment needed? Sadly not (Bates et al., 2021):

EDyr, 1Dy [fr\rho} = Epyr, ITV ;EXY[ (Y5, f(Xi | Dy ))}

= Ep,,, [Exy [0 7| D))

= &7,

Epyr, Dy, [§2] =Epyr,, [Var (Er\rho | Dml)]
= Var (Eﬁho) — Var (IE Joy [Eﬁrho | D\%ID law of total variance

= %
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Var (Er\rho) = IED|7'T\DI7'eI :(Er\rho grm)z
=Ep7 Dz, :((Er\rho B 7”) * (g” S|T|)>2]
=Ep D1 _(Er\rh" - _”)2} +2 (gm —&n (5" Em) + (E‘n a gml)2
- - 2 2
=Ep, . D7, _(Errho - n) } - (5“ - 5|7'\>
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Var (Er\rho) = IED|7'T\DI7'eI :(Er\rho grm)z
=Ep7 Dz, :((Er\rho B 7”) * (g” S|T|)>2]
=Ep D1 _(Er\rh" - _”)2} +2 (ng| —&n (5" Em) + (E‘n a gml)Z
- - 2 2
=Ep, . D7, _(Errho - n) } - (5“ - 5|7-‘>

* = EDITMDIE\ l:(ﬁﬁ‘ho — gn)2:| — (gn — g|7~r‘)2 —Var (5<f ’ /DT,))
sample size bias
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Train/test/validate

Hold-out ok for error estimation ... model selection/hyperparameter tuning?
Need a further split! Assume 6 indexes models or is a hyperparameter.

Create partition,

¢ Training, Dr.
e Validation, Dy,
¢ Testing, D7,

Where 7, N T, =0, 7, NV =0,T.NV=0and 7, UV U T,

{1,...,n}.
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Train/test/validate

Hold-out ok for error estimation ... model selection/hyperparameter tuning?
Need a further split! Assume 6 indexes models or is a hyperparameter.

Create partition,
¢ Training, Dr.
e Validation, Dy,
¢ Testing, D7,

Where 7, NTe =0, 7, NV =0,7.NV=0and T, UVUT. = {1,...,n}.

A~

0 = arg m1n

Zﬁ(yi,fe(xi | D7)

S%

Z L(yi f@(xz | D7;.))

€T,

V|

Eifee —
€ |T|
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Problems

0.391 0.153

0.628  0.394
X =

—1.556 2.421

— P X =

Xva

Match splits with response y = (ytr, Ytes Yva)-

0.391 0.153
: : Fit models
1.385 0.629
—1.556  2.421 Choose model/
: : pars
0.996 0.056
0.628 0.394 .
Final accuracy
: : estimate
—0.211 —0.729
R
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Problems
0.391 0.153
X = : : .. Fit models
1.385  0.629 50% of data
0.391 0.153 1556 92.491
0.628 0.394 o : Choose model/
X= : L Ko = : S pars
—1.556 2.421 0.996 0.056 25% of data
0.628 0.394 )
Final accuracy
Xva = : : e éestimate
—0.211  —0.729 25% of data

Match splits with response y = (ytr, Ytes Yva)-
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Train/test/validate problems

¢ Only some of the data is used in fitting, other parts never used during fit.

¢ Only some of data is used in evaluation (what if hard to predict observations
are by chance allocated to train/test/...)

e Again, the final error estimate will usually be conservative, since once the
best model is chosen we refit to the whole dataset and would expect slightly
improved results.

e Iflittle data, possibly hybrid: use in-sample estimators to choose
hyperparameters and estimate error using hold-out

y_ P
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Cross-validation

The “original” cross-validation is called Leave One Out (LOO).
e SplitsZ_;, ={1,...,n}\ {i} fori e {1,...,n}
e Total of n models fitted to each Z_;
e Error for observation ¢ assessed on model fitted to Z_;

Overall,

_ 1 o
Erryoo = n Z L(yi, f(xi|Dz_,))
=1
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Cross-validation

The “original” cross-validation is called Leave One Out (LOO).
e SplitsZ_;, ={1,...,n}\ {i} fori e {1,...,n}
e Total of n models fitted to each Z_;
e Error for observation ¢ assessed on model fitted to Z_;

Overall,

_ 1 o
Erryoo = n Z L(yi, f(xi|Dz_,))
=1

But: computationally expensive, asymptotically equivalent to AIC.
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K -fold cross-validation

Arguably most popular form of cross validation.
Partition data into K equally sized disjoint parts, Z1, ..., Zx with

K
LiNnZ;=0Vi#j and | JZ; = {1,...,n}
=1

each fold having |Z;| = 7 observations.

(for simplicity, assume K divides n)

y_ P
9950



Academy of PhD Training in Statistics: Statistical Machine Learning — Error Estimation and Model Selection

K -fold cross-validation setup

K -fold cross validation splits data into k equally sized groups, called ‘folds’:

0.391 0.153
X1 = : : fold 1
1.385 0.629
0.391 0.153 —1.556 2.421
. 0.(?28 0.;94 Xy — : : fold 2
: : e 0.996 0.056
—1.556 2.421
0.628 0.394
X = : : . fold k
—0.211 —-0.729
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Cross-validation folds

K times we: fit on green folds, evaluate error on the held out yellow fold.

fold 1 fold 2 fold 3
fold 1 fold 2 fold 3
fold 1 fold 2 fold 3
fold 1 fold 2 fold 3

fold k

fold k

fold k

fold k

y_ P
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Choice of K

e K = n (ie LOO)

® has the lowest bias, since each model is almost the same as the full data model!
® but has very high variance since all models are so highly correlated with each
other (mean of correlated variables has higher variance)

e K =2

¢ has high bias, for the same reason as train/test/validate
® Jower variance, as models have no data dependent correlation

K =5and K = 10 are common choices in the wild.
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Choice of K

e K = n (ie LOO)

® has the lowest bias, since each model is almost the same as the full data model!

® but has very high variance since all models are so highly correlated with each
other (mean of correlated variables has higher variance)

e K =2
¢ has high bias, for the same reason as train/test/validate
® Jower variance, as models have no data dependent correlation
K =5and K = 10 are common choices in the wild.

CAUTION! Time series, hidden ordering and concept drift all require careful
attention.
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Theory

e Wager (2020): Cross-validation is,

* asymptotically consistent in identifying the better performing of two models,
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Theory

e Wager (2020): Cross-validation is,
* asymptotically consistent in identifying the better performing of two models,

® biased estimate of generalisation error.
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Theory

e Wager (2020): Cross-validation is,
* asymptotically consistent in identifying the better performing of two models,

® biased estimate of generalisation error.

e Bates et al. (2021): Cross-validation is,

* more closely estimating expected (prediction) error, &, (-)
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Theory

e Wager (2020): Cross-validation is,
* asymptotically consistent in identifying the better performing of two models,

® biased estimate of generalisation error.

e Bates et al. (2021): Cross-validation is,
* more closely estimating expected (prediction) error, &, (-)

* but, confidence intervals calibrated to include £(f | D), can be constructed
using nested cross validation

y_ P
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Bootstrap

You have covered in previous APTS, so we just provide definition (and a little
more in notes):

Consider data set D = ((x1,%1),- - -, (Xn, yr)) and a statistic S(-) one wishes to
estimate.

To construct a bootstrap estimate of the confidence interval of the statistic S(-),

draw B new samples of size n with replacement from D, D*!, ..., D*B and compute:
. 1 & b a2
Var(S(D)) = 5 I; (s(0) - 5%)

where S* = L S0 | S(D*).
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