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This Section

• Direct empirical estimation

• k-nearest neighbour

• Smoothing kernels

• Kernel densities

• Nadaraya-Watson estimator

• Kernel density classification

• Naïve Bayes
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Direct empirical estimation

Recall, Bayes predictor:

g⋆(x) := arg min
z∈Y

EY | X [L(Y, z) | X = x]

= arg min
z∈Y

∫
Y

L(y, z) dπY | X=x

Could construct empirical estimate of the measure πY | X=x, by looking at data
“near” x, so in a sense π̂Y | X≈x.
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k-nearest neighbour
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Formalising k-nearest neighbour

Given Dn = ((x1, y1), . . . , (xn, yn)), reorder wrt new prediction value x,

(
(x(1,x), y(1,x)), . . . , (x(n,x), y(n,x))

)
where

d(x(i,x), x) ≤ d(x(j,x), x) ∀ i < j

Then, for a general loss,

g⋆(x) = arg min
z∈Y

∫
Y

L(y, z) dπY | X=x

≈ arg min
z∈Y

1
k

k∑
i=1

L
(
y(i,x), z

)
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Formalising k-nearest neighbour: particular losses

g⋆(x) ≈
{ 1

k

∑k
i=1 y(i,x) for squared loss

median{y(i,x) : i ∈ {1, . . . , k}} for absolute loss (odd k)

0-1 loss,

g⋆(x) ≈
{

1 if
∑k

i=1 y(i,x) > k
2

0 otherwise

Or empirical probabilistic estimate,

P(Y = j | X = x) = 1
k

k∑
i=1

1{y(i,x) = j}
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Example

Example in notes
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Bayesian k-nearest neighbour (Holmes and Adams, 2002) I

Can formulate a posterior on k and β (parameter for strength of effect between
neighbours):

p(k, β | D = (X, y)) = P(Y = y | X, k, β)p(k, β)

where

P(Y = y | X, k, β) =
n∏

i=1

exp
(

β
k

∑k
j=1 1{yi = y(j,xi)}

)
∑g

ℓ=1 exp
(

β
k

∑k
j=1 1{ℓ = y(j,xi)}

)
Priors are independent, p(k, β) = p(k)p(β), e.g. uniform k on {1, . . . , n} and
improper uniform on β ∈ R+.
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Bayesian k-nearest neighbour (Holmes and Adams, 2002) II

Posterior predictive for new observation xn+1,

P(Y = yn+1 | xn+1, X, y) =
n∑

k=1

∫
P(Y = yn+1 | xn+1, X, y, k, β)p(k, β | X, y) dβ

where

P(Y = yn+1 | xn+1, X, y, k, β) =
exp

(
β
k

∑k
j=1 1{yn+1 = y(j,xn+1)}

)
∑g

ℓ=1 exp
(

β
k

∑k
j=1 1{ℓ = y(j,xn+1)}

)
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Theoretical behaviour

• knn is asymptotically consistent (Stone, 1977)
• as long as k is st k/n → 0 as n increases

• Convergence of expected error to Bayes error bounded above (regression) by
O
(
n−2α/(d+2α)

)
term (Kohler et al., 2006)

• if f bounded, α-Hölder continuous plus finite moment conditions on X

• For classification, no k > 1 has lower error against all possible distributions
than k = 1 (Cover and Hart, 1967)

• practically not a helpful result as usually more worried about striking a
bias-variance tradeoff

• k = 1 low bias, high variance;
• k ≫ 1 higher bias, lower variance.



Academy of PhD Training in Statistics: Statistical Machine Learning — Local Methods

Theoretical behaviour

• knn is asymptotically consistent (Stone, 1977)
• as long as k is st k/n → 0 as n increases

• Convergence of expected error to Bayes error bounded above (regression) by
O
(
n−2α/(d+2α)

)
term (Kohler et al., 2006)

• if f bounded, α-Hölder continuous plus finite moment conditions on X

• For classification, no k > 1 has lower error against all possible distributions
than k = 1 (Cover and Hart, 1967)

• practically not a helpful result as usually more worried about striking a
bias-variance tradeoff

• k = 1 low bias, high variance;
• k ≫ 1 higher bias, lower variance.



Academy of PhD Training in Statistics: Statistical Machine Learning — Local Methods

Theoretical behaviour

• knn is asymptotically consistent (Stone, 1977)
• as long as k is st k/n → 0 as n increases

• Convergence of expected error to Bayes error bounded above (regression) by
O
(
n−2α/(d+2α)

)
term (Kohler et al., 2006)

• if f bounded, α-Hölder continuous plus finite moment conditions on X

• For classification, no k > 1 has lower error against all possible distributions
than k = 1 (Cover and Hart, 1967)

• practically not a helpful result as usually more worried about striking a
bias-variance tradeoff

• k = 1 low bias, high variance;
• k ≫ 1 higher bias, lower variance.



Academy of PhD Training in Statistics: Statistical Machine Learning — Local Methods

k = 1 =⇒ Voronoi diagrams

12.5

15.0

17.5

20.0

22.5

30 40 50 60
bill_length_mm

bi
ll_
de
pt
h_
m
m species

Adelie

Chinstrap

Gentoo



Academy of PhD Training in Statistics: Statistical Machine Learning — Local Methods

Computational considerations

Naïvely, computational cost ∝ nkd and memory cost ∝ nd

• Memory (García et al., 2012)
• Condensing (Hart, 1968 etc): keep points near decision boundary, eliminate
redundancy. e.g. interior points on Voronoi diagram

• Editing (Wilson, 1972 etc): remove boundary points in noisy region to keep core
representatives

• Compute
• k-d tree algorithms (Bentley, 1975): partition space into tree structure to guide
search for nearest neighbours (then ∝ log n)

• Approximate nearest neighbour, eg via random projections (Andoni et al., 2018)
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Curse of dimensionality (I)

e.g. in convergence rate, O
(
n−2α/(d+2α)

)

knn assumes there is other data ‘nearby’, but as dimension grows,
neighbourhoods grow very fast.

Let πX be uniform on X = [0, 1]d and consider k = 5. We measure ‘local’ by size of
hypercube that contains an observation and it’s k = 5 nearest neighbours.
Example in notes

Uniform =⇒ Volume ℓd ≈ k
n =⇒ ℓ ≈

(
k
n

) 1
d … not so local!
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Curse of dimensionality (II)
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Distances

• ℓ1-norm (Manhattan), ℓ2-norm (Euclidean) or Mahalanobis distance common
for numeric predictors.

• Gower’s distance (Gower, 1971). d(xi, xj): take each variable, ℓ ∈ {1, . . . , d}

• Numeric: δℓ = |xiℓ−xjℓ|
Rℓ

where Rℓ = maxi{xiℓ} − mini{xiℓ}

• Categorical: δℓ =

{
1 if xiℓ = xjℓ

0 otherwise

• Total distance: d(xi, xj) = 1
d

∑d
ℓ=1 δℓ

• Many other special distances customised for particular scenarios, eg tangent
data for images etc. (Hastie et al., 2009, eg §13.3.3)
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Scaling

Important final word: k-nearest neighbours is not invariant to the scale of
individual variables!

∴ do centre and scale your data

Easy mistake: be careful! to ensure you apply the mean and standard deviation
from the training data to scale new observations (ie don’t scale your test
observations independently)
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Example

Hays and Efros (2008) application example
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Smoothing kernels

knn defined ‘local’ by looking for k near observations, irrespective of their
distance.

Dual idea? Fix the distance we look, irrespective of the number of observations
within that radius.

f̂(x) =
∑n

i=1 yi1{d(xi, x) < h}∑n
i=1 1{d(xi, x) < h}

Now, rather than choose k ∈ N, we choose h ∈ R+, called the bandwidth.
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Kernel density estimation: justification (I)

Tackle third classical ML problem first, and use this to solve the other two: ie
construct density estimator for πX .

Simplest density estimator is a histogram. Could we instead place bins at the
observations and accumulate? Yes!

fX(x) = ∂FX

∂x
(x)

= lim
h→0

FX(x + h) − FX(x)
h

≡ lim
h→0

FX(x) − FX(x − h)
h
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Kernel density estimation: justification (II)

fX(x) = lim
h→0

FX(x + h) − FX(x)
h

≡ lim
h→0

FX(x) − FX(x − h)
h

=⇒ fX(x) + fX(x)
2

= lim
h→0

FX(x + h) −����FX(x) +����FX(x) − FX(x − h)
2h

fX(x) = lim
h→0

P(x − h < X < x + h)
2h

≈ 1
2h

(
1
n

n∑
i=1

1{x − h < xi < x + h}
)

for small h > 0

= 1
n

n∑
i=1

1
2h
1

{∣∣∣∣x − xi

h

∣∣∣∣ < 1
}

︸ ︷︷ ︸
⋆ valid uniform pdf
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Kernel density estimation: justification (III)
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Kernel function

Replace uniform density by smoother alternative, a kernel function.

A kernel function is any function K such that,

1 K : X → [0, ∞)
2 K(·) is a valid probability density (integrating to 1),∫

X
K(dπX) = 1

3 K(·) is symmetric, K(x) = K(−x) ∀ x ∈ X .

Some authors only require (i) or (i) and (ii), whilst others add explicit moment
conditions on K(·) (ie second moment =1, all moments finite).
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The kernel density estimator (KDE)

The kernel density estimator of the density fX(·) based on n iid observations
(x1, . . . , xn) drawn from πX is given by:

f̂X(z) = 1
n

n∑
i=1

1
hd

K

(z − xi

h

)

Where K(·) is a valid kernel function. NB, f̂X(z) a valid pdf.

Practically: product of univariate kernel functions

f̂X(z) = 1
n

n∑
i=1

d∏
ℓ=1

1
hℓ

K

(
zℓ − xiℓ

hℓ

)
where K : R → [0, ∞), possibly different bandwidths per dimension, hℓ.
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Common univariate kernel functions
• Епанечников (1969) (translation Epanechnikov (1969))

K(x) = 3
4

(1 − x2)1{|x| ≤ 1}

original scaled by factor
√

5 for unit second moment,

K(x) =
(

3
4
√

5
− 3x2

20
√

5

)
1{|x| ≤

√
5}

• Gaussian

K(x) = 1√
2π

exp
(

x2

2

)

• Triangular
K(x) = (1 − |x|)1{|x| ≤ 1}

Practically speaking, any choices does not have huge impact on result.
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Visualising univariate kernel functions

Epanechnikov
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rectangular
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Errors in KDE

KDE is about density estimation in the general setting, so uses the following error
metrics rather than the ML metrics presented before:

Eπn
X

[(
fX(x) − f̂X(x)

)2
]

mean square error (MSE)∫
X
Eπn

X

[(
fX(x) − f̂X(x)

)2
]

dx mean integrated square error (MISE)

Note

• MSE is at fixed x;
• MISE is not integrated wrt πX
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KDE bias/variance

Bias[f̂X(x)] ≈ h2

2
f ′′

X(x)
∫

z2K(z) dz + o(h)2 = O
(
h2
)

Var[f̂X(x)] ≈ fX(x)
nh

∫
K2(z) dz = O

(
(nh)−1

)
• h ≫ =⇒ higher bias, lower variance
• h ≪ =⇒ lower bias, higher variance

Leads to asymptotic mean integrated square error,

AMISE = 1
nh

∫
K2(z) dz + h4

(∫
f ′′

X(z)2 dz

)(∫
z2K(z) dz

)2
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Optimal / practical bandwidth selection

h =
( ∫

K2(z) dz

n (
∫

f ′′
X(z)2 dz) (

∫
z2K(z) dz)2

) 1
5

• Rules of thumb: estimate
∫

f ′′
X(z)2 dz by substituting Normal density for f .

• default method used by density() function in R.
• Cross validation (see next lecture): either unbiased (estimate square error
directly) or biased (estimate the AMISE).

• density(..., method = ”ucv”) or density(..., method = ”bcv”)

• Plug-in: make pilot estimate of derivative and seek fixed-point solution of
above.

• density(..., method = ”SJ”)

Jones et al. (1996) recommend plug-in approach (method = ”SJ”)
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• default method used by density() function in R.
• Cross validation (see next lecture): either unbiased (estimate square error
directly) or biased (estimate the AMISE).

• density(..., method = ”ucv”) or density(..., method = ”bcv”)

• Plug-in: make pilot estimate of derivative and seek fixed-point solution of
above.

• density(..., method = ”SJ”)

Jones et al. (1996) recommend plug-in approach (method = ”SJ”)
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Pivoting to regression

E [Y | X = x]

=
∫

Y
yfY | X(y | x) dy
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Y
y

fXY (x, y)
fX(x)

dy

≈
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Y
y
��
1
n

∑n
i=1

1
hd+1 K

(x−xi
h

)
K
(

y−yi
h
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��
1
n
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1
hd K

(x−xi
h

) dy

=
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1

hd K
(x−xi

h

) ∫
Y

y
hK

(
y−yi

h

)
dy∑n

i=1 ��
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hd K
(x−xi
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=
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i=1 yiK
(x−xi
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(x−xi
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Nadaraya-Watson estimator

The kernel based Nadaraya-Watson estimator of a regression function based on
training data Dn = ((x1, y1), . . . , (xn, yn)) is:

f̂(x) =
∑n

i=1 yiK
(x−xi

h

)∑n
i=1 K

(x−xi
h

)

More common to use cross-validation to select h here (see next lecture).
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Naïve Bayes classifier

P(Y = i | X = x) =
fX | Y (x | Y = i)P(Y = i)∑g

j=1 fX | Y (x | Y = j)P(Y = j)

Use KDE for fX | Y (x | Y = i) and empirical estimate for P(Y = i)? Dimensionality
…

Naïve Bayes classifier assumes conditional independence of all dimensions in X .
That is,

P(Y = i | X = x) =
P(Y = i)

∏d
k=1 fXk | Y (xk | Y = i)∑g

j=1 P(Y = i)
∏d

k=1 fXk | Y (xk | Y = i)

and construct KDE of univariate marginal densities fXk | Y (xk | Y = i) ∀ k.

naivebayes::naive_bayes(..., kernel = TRUE) (Majka, 2019) to fit in R.
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