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This Section

e Direct empirical estimation

e k-nearest neighbour

e Smoothing kernels
¢ Kernel densities
® Nadaraya-Watson estimator
¢ Kernel density classification

® Naive Bayes
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Direct empirical estimation

Recall, Bayes predictor:

g"(x) := argmin By | x [L(Y, 2) | X = x]

= in [ £ dry | x—
argmin /y (y, 2) dmy | x=x

Could construct empirical estimate of the measure 7y-| x_, by looking at data
“near” x, s0 in a sense 7ty | yax-
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k-nearest neighbour
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Formalising k-nearest neighbour

Given D,, = ((x1,91),-- ., (Xn, yn)), reorder wrt new prediction value x,

((X(l,x)a y(l,x))> SER) (X(n,x)a y(n,x)))

where

d(X(i %), %) < d(X(jx)X) Vi<j
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Formalising k-nearest neighbour

Given D,, = ((x1,91),-- ., (Xn, yn)), reorder wrt new prediction value x,

((X(l,x)a y(l,x))> SER) (X(n,x)a y(n,x)))

where

d(X(i %), %) < d(X(jx)X) Vi<j
Then, for a general loss,

g (x) = argmln/ L(y,z) dry | x—x

~ arg gél)f}l z ; L (y(i,x)7 Z)
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Formalising k-nearest neighbour: particular losses

g (x) ~ g Yin Yiix) for squared loss
median{y; ) :i € {1,...,k}} for absolute loss (odd k)
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Formalising k-nearest neighbour: particular losses

g (x) ~ g Yin Yiix) for squared loss
median{y; ) :i € {1,...,k}} for absolute loss (odd k)

0-1 loss,

vy J U Y Y60 > 6
g% (x) ~ :
0 otherwise
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Formalising k-nearest neighbour: particular losses

g (x) ~ g Yin Yiix) for squared loss
median{y; ) :i € {1,...,k}} for absolute loss (odd k)

0-1 loss,

0 otherwise

: k k
g*(x) ~ {1 if Zi:l Y(i,x) > b

Or empirical probabilistic estimate,

k
PY =j|X=x)= Z {vix) =4}
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Example

Example in notes
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Bayesian k-nearest neighbour (Holmes and Adams, 2002) I

Can formulate a posterior on k and 3 (parameter for strength of effect between
neighbours):

p(k76 ’ D= (Xay)) = ]P)(Y =Y ’ X, k?ﬁ)p(kwﬁ)

where

4 Bk 1y =y
P(Y =y|X,k,5) :H exp( J=1 {vi =y, 2)})
=1 g 1exp( k1= J7Xi)}>

Priors are independent, p(k, 3) = p(k)p(5), e.g. uniform k£ on {1,...,n} and
improper uniform on 3 € R™.
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Bayesian k-nearest neighbour (Holmes and Adams, 2002) II

Posterior predictive for new observation x,, 1,

]P)(Y = Yn+1 |Xn+1aX7Y) - Z /]P)(Y = Yn+1 |Xn+17X7y7k7ﬁ)p(k7/6 | X7Y) d/B
k=1

where

exp (% Sk Wy = y(j,x,,,+1)})

P(Y = Yn+1 ‘ Xn+1, Xa Y, k? ﬂ) =
Zg:l exp (% ?:1 ]1{6 = y(j7xn+1)})
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Theoretical behaviour

¢ knn is asymptotically consistent (Stone, 1977)
® aslongas kis st k/n — 0 asn increases
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Theoretical behaviour

¢ knn is asymptotically consistent (Stone, 1977)
® aslongas kis st k/n — 0 asn increases

e Convergence of expected error to Bayes error bounded above (regression) by
0 (nfza/ (d+ 2a)) term (Kohler et al., 2006)
¢ if f bounded, a-Holder continuous plus finite moment conditions on X
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Theoretical behaviour

¢ knn is asymptotically consistent (Stone, 1977)
® aslongas kis st k/n — 0 asn increases

e Convergence of expected error to Bayes error bounded above (regression) by
0 (nfza/ (d+ 2a)) term (Kohler et al., 2006)
¢ if f bounded, a-Holder continuous plus finite moment conditions on X

e For classification, no £ > 1 has lower error against all possible distributions
than k£ = 1 (Cover and Hart, 1967)
e practically not a helpful result as usually more worried about striking a
bias-variance tradeoff
® k =1 low bias, high variance,
® k> 1 higher bias, lower variance.
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k =1 = Voronoi diagrams
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Computational considerations

Naively, computational cost o nkd and memory cost «x nd
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Computational considerations

Naively, computational cost o nkd and memory cost «x nd

e Memory (Garcia et al., 2012)
® Condensing (Hart, 1968 etc): keep points near decision boundary, eliminate
redundancy. e.g. interior points on Voronoi diagram
e Editing (Wilson, 1972 etc): remove boundary points in noisy region to keep core
representatives
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Computational considerations

Naively, computational cost o nkd and memory cost «x nd

e Memory (Garcia et al., 2012)
® Condensing (Hart, 1968 etc): keep points near decision boundary, eliminate
redundancy. e.g. interior points on Voronoi diagram
e Editing (Wilson, 1972 etc): remove boundary points in noisy region to keep core
representatives

e Compute
¢ k-d tree algorithms (Bentley, 1975): partition space into tree structure to guide
search for nearest neighbours (then  log n)
® Approximate nearest neighbour, eg via random projections (Andoni et al., 2018)
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Curse of dimensionality (I)

e.g. in convergence rate, O (n*h/ (d+2a))
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Curse of dimensionality (I)

e.g. in convergence rate, O (n*h/ (d+2a))

knn assumes there is other data ‘nearby’, but as dimension grows,
neighbourhoods grow very fast.

Let mx be uniform on X = [0,1]? and consider k = 5. We measure ‘local’ by size of
hypercube that contains an observation and it’s k£ = 5 nearest neighbours.
Example in notes

y_ P
9950



Academy of PhD Training in Statistics: Statistical Machine Learning — Local Methods

Curse of dimensionality (I)

e.g. in convergence rate, O (n*h/ (d+2a))

knn assumes there is other data ‘nearby’, but as dimension grows,
neighbourhoods grow very fast.

Let mx be uniform on X = [0,1]? and consider k = 5. We measure ‘local’ by size of
hypercube that contains an observation and it’s k£ = 5 nearest neighbours.
Example in notes

=

k

Uniform = Volume ¢¢ ~ w= I~ (%) ... hot so local!
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Curse of dimensionality (II)
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Distances

¢ /;-norm (Manhattan), />-norm (Euclidean) or Mahalanobis distance common
for numeric predictors.
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Distances

¢ /;-norm (Manhattan), />-norm (Euclidean) or Mahalanobis distance common
for numeric predictors.

* Gower’s distance (Gower, 1971). d(x;,x;): take each variable, ¢ € {1,...,d}

_ |mie—zjel
- R

® Numeric: d, ;

where Ry = max;{x;o} — min;{z;}

. 1 ifxyy=ux,
e Categorical: 6, = {0 otfleérwi:éé

e Total distance: d(x;,x;) = 1 3°0_, 4
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Distances

¢ /;-norm (Manhattan), />-norm (Euclidean) or Mahalanobis distance common
for numeric predictors.

* Gower’s distance (Gower, 1971). d(x;,x;): take each variable, ¢ € {1,...,d}

_ |mie—zjel
- R

® Numeric: d, ;

where Ry = max;{x;o} — min;{z;}

1 lffEM = Tjr

e Categorical: 6, = {0 otherwise

e Total distance: d(x;,x;) = 1 3°0_, 4

e Many other special distances customised for particular scenarios, eg tangent
data for images etc. (Hastie et al., 2009, eg §13.3.3)
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Scaling

Important final word: k-nearest neighbours is not invariant to the scale of
individual variables!

.. do centre and scale your data

Easy mistake: be careful! to ensure you apply the mean and standard deviation
from the training data to scale new observations (ie don’t scale your test
observations independently)
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Example

Hays and Efros (2008) application example
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Smoothing kernels

knn defined ‘local’ by looking for k near observations, irrespective of their
distance.
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Smoothing kernels

knn defined ‘local’ by looking for k near observations, irrespective of their
distance.

Dual idea? Fix the distance we look, irrespective of the number of observations
within that radius.
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Smoothing kernels

knn defined ‘local’ by looking for k near observations, irrespective of their
distance.

Dual idea? Fix the distance we look, irrespective of the number of observations
within that radius.

iz yil{d(xi, x) < h}

f(x) = ., 1{d(x;,x) < h}

Now, rather than choose k € N, we choose h € RT, called the bandwidth.
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Kernel density estimation: justification (I)

Tackle third classical ML problem first, and use this to solve the other two: ie
construct density estimator for 7.
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Kernel density estimation: justification (I)

Tackle third classical ML problem first, and use this to solve the other two: ie
construct density estimator for 7.

Simplest density estimator is a histogram. Could we instead place bins at the
observations and accumulate? Yes!

Fr(e) = 2% (@)

Fx(.%'-l-h) — Fx(x)

p— 1'
hlg(la h

= lim Fx(.r) —Fx(l'— h)
h—0 h

y_ P
9950



Academy of PhD Training in Statistics: Statistical Machine Learning — Local Methods

Kernel density estimation: justification (II)

Ple—h<X<az+h)

fX(Z')—%g% o
%% (i;ﬂ{x_h<xi<x+h}> for small A > 0

1 &1 Tr—x;
= = —1 <1
nizzl2h { h }

* valid uniform pdf
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Kernel density estimation: justification (III)

Flipper length (mm) &‘g
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Kernel function

Replace uniform density by smoother alternative, a kernel function.
A kernel function is any function K such that,

O K:X—]000)
® K(-) is a valid probability density (integrating to 1),

/XK(de) _q

©® K () is symmetric, K (x) = K(—x) Vx € X.

Some authors only require (i) or (i) and (ii), whilst others add explicit moment
conditions on K (-) (ie second moment =1, all moments finite).
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The kernel density estimator (KDE)

The kernel density estimator of the density fx(-) based on n iid observations
(x1,...,%,) drawn from 7 x is given by:

Where K (-) is a valid kernel function. NB, fx (z) a valid pdf.
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The kernel density estimator (KDE)

The kernel density estimator of the density fx(-) based on n iid observations
(x1,...,%,) drawn from 7 x is given by:

Where K (-) is a valid kernel function. NB, fx (z) a valid pdf.

Practically: product of univariate kernel functions

where K : R — [0, 00), possibly different bandwidths per dimension, h,.
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Common univariate kernel functions

e EmaneunukoB (1969) (translation Epanechnikov (1969))
K() = 31— a?)1{ja] < 1)

original scaled by factor v/5 for unit second moment,

3 32
K(z) = <4\/5 — 20\/5> 1{|z| < V/5}

e Gaussian

e Triangular
K(z) = (1 — [z])1{[z] < 1}

y_ P
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Visualising univariate kernel functions

0.8~

K(x)

0.4-

0.0-

Epanechnikov

Gaussian
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rectangular epanechnikov gaussian
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Errors in KDE

KDE is about density estimation in the general setting, so uses the following error
metrics rather than the ML metrics presented before:

~ 2
Ezn [(fX(x) — fX(x)) ] mean square error (MSE)
/X Ern [( fx(x)— fX(x))Q] dx mean integrated square error (MISE)

Note

e MSE is at fixed x;
e MISE is not integrated wrt 7x
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KDE bias/variance

2
Bias[fx (2)] ~ " gg( ) / 2K (=) d +o(h)? = O (1?)

2
Var[fx ( ((nh) )

® 5 > — higher bias, lower variance
* h <« = lower bias, higher variance
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KDE bias/variance

2
Bias[fx (2)] ~ " gg( ) / 2K (=) d +o(h)? = O (1?)

2
Var[fx ( ((nh) )

® 5 > — higher bias, lower variance
* h <« = lower bias, higher variance

Leads to asymptotic mean integrated square error,

AMISE — / K2(2) dz + b ( / dz) ( / 2K (2) dz>2
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Optimal / practical bandwidth selection

(S

_ ( [K2(2)dz )
n(f fi(2)?d2) ([ 22K (2) dz)°
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Optimal / practical bandwidth selection

- ( [K2(2)dz )5
n(f fi(2)?d2) ([ 22K (2) dz)°

* Rules of thumb: estimate [ f% ()2 dz by substituting Normal density for f.
e default method used by density() function in R.
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Optimal / practical bandwidth selection

- ( [K2(2)dz )5
n(f fi(2)?d2) ([ 22K (2) dz)°

* Rules of thumb: estimate [ f% ()2 dz by substituting Normal density for f.
e default method used by density() function in R.

e Cross validation (see next lecture): either unbiased (estimate square error
directly) or biased (estimate the AMISE).

® density(..., method = "ucv”) or density(..., method = "bcv”)
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Optimal / practical bandwidth selection

- ( [K2(2)dz )5
n(f fi(2)?d2) ([ 22K (2) dz)°

* Rules of thumb: estimate [ f% ()2 dz by substituting Normal density for f.
e default method used by density() function in R.

e Cross validation (see next lecture): either unbiased (estimate square error
directly) or biased (estimate the AMISE).
® density(..., method = "ucv”) or density(..., method = "bcv”)
e Plug-in: make pilot estimate of derivative and seek fixed-point solution of

above.
® density(..., method = ”SJ"”)

Jones et al. (1996) recommend plug-in approach (method = ”SJ")
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Pivoting to regression

E[Y|X = x|
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Pivoting to regression

E[Y!X—X]—/yyfyx(y!X)dy
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Pivoting to regression

E[Y!X—X]—/yyfyx(y!X)dy

fXY(Xa y) d

v )
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Pivoting to regression

E[Y!X—X]—/yyfyx(y!X)dy

[xy(x,y)
yy fx(x) I

Zz lhd+1 (
[
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Pivoting to regression

E[Y!X—X]—/yyfyx(y!X)dy

_ fxy(%,y)
B yy fx(x) I

/ %Zz 1hd+1 (
n: L (
11;34( (%5 xl)fy%K(
i:lﬂ%K xhXZ

y_ P
9950



Academy of PhD Training in Statistics: Statistical Machine Learning — Local Methods

Pivoting to regression

E[Y!X—X]—/yyfyx(y!X)dy
fxv(x,y)
yy Ix(x) a

ISn ) i K (55
<A

T K “1>fyzK<
1)

zl
721 ly’LK(x =

9950

2:1 K (X hxz)
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Nadaraya-Watson estimator

The kernel based Nadaraya-Watson estimator of a regression function based on
training data D,, = ((x1,¥1), - - -, (Xn, Yn)) is:

Ry > i1 YilK (xjhxz')
T T R

More common to use cross-validation to select i here (see next lecture).
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Naive Bayes classifier

Fxiy(x|Y = )B(Y =i

PV =il X =x) = TV =B =)

Use KDE for fx|y(x|Y =) and empirical estimate for P(Y" = 4)? Dimensionality
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Naive Bayes classifier

Fxiy(x|Y = )B(Y =i

PV =il X =x) = TV =B =)

Use KDE for fx|y(x|Y =) and empirical estimate for P(Y" = 4)? Dimensionality

Naive Bayes classifier assumes conditional independence of all dimensions in X'.
That is,

PY =i|X =x)= P(Y = i) [Tioy Fxe |y (o] Y =)
I PY =) Iy fx v (e | Y =)
and construct KDE of univariate marginal densities fx, |y (zx|Y = 1) V.

naivebayes::naive_bayes(..., kernel = TRUE) (Majka, 2019) to fit in R.
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