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This Section

• Gentle introduction to supervised learning

• Formalise the problem setting

• Formalise the approach to learning

• Defining errors and optimal predictors

• Error decompositions

• Consistency

• Model fitting

Brace yourself … a lot of things to define coming up …
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Notation

• Scalars: x, xi, xij , yi, βi, ...

• Vectors: x, y, β, ...

• follow the standard convention that all are column vectors
• transpose xT is row vector
• xi indicates a vector, the elements of which are xij

• Matrices: X, Y, ...

• matrix transpose: XT

• i-th row entries: xi (as column vector)
• j-th column entries: x·j
• (i, j)-th element: xij
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• Random variables: X, Y, ε, ...

• clear from context whether a random scalar/vector/matrix/…
• clear from context whether Greek letters are random variables
• the probability measure associated with a random variable X is πX .

• Spaces: X , Y,R,Z,Rd = R × · · · × R︸ ︷︷ ︸
d times

, ...

• Estimator: denoted by a hat, f̂(·), β̂, ...

• Functions:
• 1{A} is the indicator function for A being true.
• if f(x) has vector valued output, then fj(x) denotes the j-th component of the
output.

• where necessary an arbitrary function, f(x), will be distinguished from a
probability density function (pdf), fX(x), by the presence or absence of a
random variable subscript.

• the cumulative distribution function (cdf) is denoted FX(x).
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• Other:
• A := B reads “A is defined to be B”.

• For a finite set I, |I| denotes the cardinality of the set.

Note: we avoid excessive formality and write min . . ., implicitly assuming
minimum exists; likewise, E[ ] makes an implicit assumption that it exists.
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Problem setting (I)

The most common supervised machine learning problems fall broadly under three
types (Vapnik, 1998):

• Regressionmodels a quantitative outcome.
• What value is a house based on geographic/house information;
• How long until a patient is discharged from hospital?

• Classificationmodels a qualitative outcome.
• Medics predicting a disease from test results;
• Is the email just sent to my address spam?
• Bank predicting if borrower will default;
• Identifying a number from image of handwritten value.

• Density estimationmodels a full probability distribution.
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Problem setting (II)

Premise: we have access to a set of n observations of

• features / predictors from some space X , eg:
• X ⊂ Rd

• or, X can be a tensor in deep learning

• and corresponding outcomes / responses / targets from some space Y, eg:
• Y ⊂ R =⇒ regression;
• or, Y = {1, . . . , g} where g ≥ 2 =⇒ classification;
• or, for g = 2 often take Y = {0, 1}
• or, Y can be a tensor in deep learning

Dataset is D = {(x1, y1), . . . , (xn, yn)} ⊂ (X × Y)n, where xi is a vector of length d,

xi = (xi1, . . . , xid)T ∈ X

All observations of single feature x·j , x·j = (x1j , . . . , xnj)T
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Problem setting: objective

Objective is to learn relationship between features and response:

Regression: Y = f(X) + ε

ε is random error term, assumed mean zero.

Classification: (Y | X = x) ∼ Categorical
(
(p1, . . . , pg) = f(x)

)
where pi = P(Y = i | X = x)

Density Estimation: (Y | X = x) ∼ P(Y | X = x)

possibly by jointly modelling P(X, Y )
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“A mathematician is a machine for turning coffee into theorems”
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Example 2D regression
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Figure 1: From “An Introduction to Statistical Learning”.
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Example 3D regression
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Figure 2: From “An Introduction to Statistical Learning”.
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Example classification (I)
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Example classification (II)
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Example classification (III)
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Problem setting: summary

• Focus is heavily on prediction and predictive accuracy for future observations

• Assume in future we have access to x, but not y

• The “model” setting is very general, we usually directly tackle estimation of f̂

Important aside: we are going to be interested in the random inputs scenario, not
the fixed inputs one that is often studied in classical statistics setting.
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Loss functions

Given fitted model f̂(·) and newly observed feature vector x, denote the
prediction ŷ := gf̂ (x).

We want to minimise the loss we suffer when predicting ŷ and actually observing
y. To do so, define a loss function,

L : Y × Y → [0, ∞)

which measures the discrepancy between prediction and reality.

For classification, often

L : Y × [0, 1]g → [0, ∞)
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Loss functions: regression

• Square loss, L(y, ŷ) = (y − ŷ)2

• Absolute loss, L(y, ŷ) = |y − ŷ|

• Quantile loss, (sometimes called pinball loss),

L(y, ŷ) =
{

(1 − α)(ŷ − y) if y ≤ ŷ

α(y − ŷ) if y > ŷ

where α ∈ (0, 1) is the target quantile.
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Loss functions: classification

• 0-1 loss, L(y, ŷ) = 1{y ̸= ŷ}

• Cross entropy loss, L(y, p̂) = −
∑g

j=1 1{y = j} log p̂j = − log p̂y

• Brier score loss, L(y, p̂) =
∑g

j=1(1{y = j} − p̂j)2

• Exponential loss (binary+scoring setting, y ∈ {−1, 1}),
L(y, f̂(x)) = exp(−yf̂(x))
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Generalisation error

The generalisation error (sometimes called generalisation risk) of a model f̂(·), with
respect to a loss L, is the expected loss of a future prediction gf̂ (·) with respect to
the true data generating measure πXY ,

E(f̂) := EXY

[
L(Y, gf̂ (X))

]

Note: f̂ is not a random variable … assumes a fixed fitted model already.
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Estimated generalisation error

The estimated generalisation error based on dataset D = ((x1, y1), . . . , (xm, ym)),
where (xi, yi)

iid∼ πXY is,

ÊD(f̂) := 1
m

m∑
i=1

L(yi, gf̂ (xi)) ≈ E(f̂)

Var
(
ÊD(f̂)

)
≈ 1

m(m − 1)

m∑
i=1

(
L(yi, gf̂ (xi)) − ÊD(f̂)

)2

• D = data used to fit f̂ =⇒ training/apparent error
• D = different iid data from πXY =⇒ test error
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Example

Example in notes
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Training/apparent error

Problems with training/apparent error

1 estimate is constrained to the same predictor/feature values as in the data
that was used to fit the model;

2 model fitting specifically adapted to the particular responses in the training
data, so the error not representative of future responses, even when made at
same predictor values.

So …

• training/apparent error is biased (point 2); and

• estimating subtly different quantity (point 1)! In-sample fixed inputs error:

Err := EY | X=xi

[
L(Y, gf̂ (xi))

]
Êrr := 1

n

n∑
i=1

L(yi, gf̂ (xi))
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What to predict?

Note, by total law of expectation:

E(f) = EXY

[
L(Y, gf̂ (X))

]
= EX

[
EY | X [L(Y, gf (X)) | X = x]

]
∴ pointwise solution to minimise generalisation error means we should ideally
choose for our prediction function gf (X) to predict:

g⋆(x) := arg min
z∈Y

EY | X [L(Y, z) | X = x]

This is the so-called Bayes predictor.
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Bayes predictor: 0-1 loss

g⋆(x) = arg min
z∈Y

E [1{Y ̸= z} | X = x]

= arg min
z∈Y

P (Y ̸= z | X = x)

= arg min
z∈Y

1 − P (Y = z | X = x)

= arg max
z∈Y

P (Y = z | X = x)

∴ (Y | X = x) ∼ Categorical
(
(p1, . . . , pg) = f(x)

)
=⇒ g⋆(x) = arg max

j∈{1,...,g}
fj(x)

=⇒ gf̂ (x) = arg max
j∈{1,...,g}

f̂j(x)
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Bayes predictor: square loss

Similarly,

g⋆(x) = arg min
z∈Y

E
[
(Y − z)2 | X = x

]
= arg min

z∈Y
E

[
((Y − E [Y | X = x]) + (E [Y | X = x] − z))2 | X = x

]
= E [Y | X = x]

∴ Y = f(X) + ε, ε zero mean

=⇒ g⋆(x) = f(x)

=⇒ gf̂ (x) = f̂(x)
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Bayes error & excess risk

The Bayes error is the generalisation error which arises when using the Bayes
predictor,

E⋆ = EX

[
inf
z∈Y

EY | X [L(Y, z) | X = x]
]

Best performance one could hope to achieve!

Never achievable!

The excess risk is the increase in generalisation error above the Bayes error
suffered by a given fitted model f̂ , that is, E(f̂) − E⋆.
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Error decompositions
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Recap

Take a breath:

• Loss functions to assess quality of prediction

• Generalisation error to assess a fixed fitted model
• estimated via test error

• training/apparent error leads to in-sample fixed inputs error

• Bayes predictor shows what to predict given our model to minimise error

• Bayes error is best we could do

• Excess risk is how much worse than the best we actually do!

• Generalisation error can be decomposed into reducible
(estimation+approximation) error and irreducible error

But … so far, everything predicated on fixed, already fitted f̂ !
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Training data

So far, model dependency on data D = {(x1, y1), . . . , (xn, yn)} “hidden” to simplify
notation and data fixed realisation.

f̂(x) could be written f̂(x | D) to stress it is a model fitted to that data … change
the data, model changes (obviously!)

Dn := ((X1, Y1), . . . , (Xn, Yn))

defined to be the random variable for n observations from joint distribution

πn
XY := πXY × · · · × πXY︸ ︷︷ ︸

n times

So, f̂(x | Dn) is realisation of f̂(x | Dn)
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X ∼ Unif(−1, 1.1), (Y | X = x) ∼ N(µ = 5x3 + 2x2 − 2x, σ = 1)
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Generalisation error and model complexity
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The double descent phenomenon

Interpolation threshold
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Expected (prediction) error

The expected error of a learning algorithm which learns f̂ ∈ F given data sample
Dn ∼ πn

XY is,

Ēn := EDn

[
E(f̂)

]
= EDn

[
EXY

[
L(Y, gf̂ (X | Dn))

]]

Sometimes more interested in the expected prediction error of a learning algorithm
at a particular predictor value X = x,

Ēn(x) := EDn

[
EY | X=x

[
L(Y, gf̂ (X | Dn))

]]
where now the inner expectation is conditioned on the predictor.
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Consistency

A learning algorithm is consistent for πXY if it is asymptotically Bayes error
efficient.

i.e. if the expected error converges to the Bayes error in the limit as the sample
size grows,

EDn

[
EXY

[
L(Y, gf̂ (X | Dn))

]]
→ E⋆ as n → ∞

A learning algorithm is universally consistent if it is consistent for all data
generating measures πXY .

The catch: universally consistent methods can be very data hungry, so often
underperform non-universally consistent methods in finite data regime!
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Learning curves
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To err is human …

Table 1: Relationship between types of error

Fixed inputs Random inputs

Fixed training set Err(·) E(·)
Random training set ⋆ Ēn(·)
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Full error decomposition (I)

For square loss, taking expectations wrt Dn of the earlier decomposition:

Ēn = EDnEXY

[(
Y − f̂(X)

)2
]

= EDnEXY

[(
f(X) − f̂(X)

)2
]

+ EDnVarXY (ε)

EDnEXY

[(
f(X) − f̂(X)

)2
]

= EXY EDn︸ ︷︷ ︸
Fubini-Tonelli Theorem

[(
f(X) − f̂(X)

)2
]

= EXY EDn

[((
f(X) − EDn f̂(X)

)
+

(
EDn f̂(X) − f̂(X)

))2
]

just ± same term

= EXY EDn

[(
f(X) − EDn f̂(X)

)2
+

(
EDn f̂(X) − f̂(X)

)2

+ 2
(
f(X) − EDn f̂(X)

) (
EDn f̂(X) − f̂(X)

)]
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Ēn = EDnEXY

[(
Y − f̂(X)

)2
]

= EDnEXY

[(
f(X) − f̂(X)

)2
]

+ EDnVarXY (ε)

EDnEXY

[(
f(X) − f̂(X)

)2
]

= EXY EDn︸ ︷︷ ︸
Fubini-Tonelli Theorem

[(
f(X) − f̂(X)

)2
]

= EXY EDn

[((
f(X) − EDn f̂(X)

)
+

(
EDn f̂(X) − f̂(X)

))2
]

just ± same term

= EXY EDn

[(
f(X) − EDn f̂(X)

)2
+

(
EDn f̂(X) − f̂(X)

)2

+ 2
(
f(X) − EDn f̂(X)

) (
EDn f̂(X) − f̂(X)

)]



Academy of PhD Training in Statistics: Statistical Machine Learning — Supervised Learning

Full error decomposition (I)

For square loss, taking expectations wrt Dn of the earlier decomposition:
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Full error decomposition (II)

EXY EDn

2
(
f(X) − EDn f̂(X)

)
︸ ︷︷ ︸
constant wrt training data

(
EDn f̂(X) − f̂(X)

)

= 2EXY

(
f(X) − EDn f̂(X)

)
EDn

[
EDn f̂(X) − f̂(X)

]
︸ ︷︷ ︸

=EDn f̂(X)−EDn f̂(X)=0


= 0



Academy of PhD Training in Statistics: Statistical Machine Learning — Supervised Learning

Full error decomposition (II)

EXY EDn

2
(
f(X) − EDn f̂(X)

)
︸ ︷︷ ︸
constant wrt training data

(
EDn f̂(X) − f̂(X)

)

= 2EXY

(
f(X) − EDn f̂(X)

)
EDn

[
EDn f̂(X) − f̂(X)

]
︸ ︷︷ ︸

=EDn f̂(X)−EDn f̂(X)=0



= 0



Academy of PhD Training in Statistics: Statistical Machine Learning — Supervised Learning

Full error decomposition (II)

EXY EDn

2
(
f(X) − EDn f̂(X)

)
︸ ︷︷ ︸
constant wrt training data

(
EDn f̂(X) − f̂(X)

)

= 2EXY

(
f(X) − EDn f̂(X)

)
EDn

[
EDn f̂(X) − f̂(X)

]
︸ ︷︷ ︸

=EDn f̂(X)−EDn f̂(X)=0


= 0



Academy of PhD Training in Statistics: Statistical Machine Learning — Supervised Learning

Full error decomposition (III)

Ēn = EXY EDn

[(
f(X) − EDn f̂(X)

)2
]

squared bias of model

+ EXY EDn

[(
EDn f̂(X) − f̂(X)

)2
]

= EXY VarDn f̂(X) variance of model fit

+ VarXY (ε) irreducible error

This is a lot more complicated in the non-square loss case, but similar
decompositions can be derived.
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Bias, variance and irreducible error

Bias

How well could my model, f̂(·), possibly approximate the true deterministic part
of the relationship, f(·), assuming I could see as much data as I like?

Variance

How sensitive is the fitting of my model, f̂(·), to the actual finite amount of data I
have to learn from?

Irreducible error

How much “true” randomness is there inherent to the problem which we could
never hope to deterministically model?

Maybe just need very flexiblemodels than can be accurately fitted to problems with
little inherent randomness? As we saw, these things all interact in a difficult way.
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Model fitting

Broadly three categories of ML model:

1 Full probabilistic model;

→ use your statistical prowess!

2 Parametric family without explicit probabilistic structure;

→ Empirical Risk Minimisation (ERM)

3 Local method constructing non-parametric empirical estimator;

→ empirical estimate of Bayes predictor
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Model fitting: ERM

F a model family (or hypothesis space) parameterised by θ ∈ Θ.

F = {f(· | θ) : θ ∈ Θ}

Assume dataset D = ((x1, y1), . . . , (xn, yn)) iid∼ πn
XY .

Fit a model f̂ ∈ F to D using empirical risk minimisation of a loss function L(·, ·) as

f̂(·) = f(· | θ̂) where θ̂ = arg min
θ∈Θ

∑
(x,y)∈D

L(y, f(x | θ))
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Model fitting: local methods

Imagining target loss of interest is squared loss, we know optimal Bayes predictor
is:

g⋆(x) = E[Y | X = x]

Local methods just estimate this value directly using data “local” (under some
metric) to x.

e.g. k-nearest neighbour empirically estimates E[Y | X = x] by selecting the
k ∈ N+ observations in D which are ‘nearest’ (by some metric, d : X × X → [0, ∞))
to x.

• conceptually simple
• easy to implement
• hard to scale with dimensionality
• easy to overfit
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Model fitting: statistical methods

Do not blindly perform ERM if ∃ plausible probabilistic model!

Unsurprisingly, if assumptions of full probabilistic model are approximately
satisfied, then full likelihood or Bayesian methods usually give better model fit
and better predictive performance.

Trivial Example: Y ∼ N(µ, σ2)

• Variance of mean: σ2

n

• Variance of median: πσ2

2n

=⇒ favour computing mean (min sq loss) versus computing median (min abs
loss) for either sq or abs loss!



Academy of PhD Training in Statistics: Statistical Machine Learning — Supervised Learning

Model fitting: statistical methods

Do not blindly perform ERM if ∃ plausible probabilistic model!

Unsurprisingly, if assumptions of full probabilistic model are approximately
satisfied, then full likelihood or Bayesian methods usually give better model fit
and better predictive performance.

Trivial Example: Y ∼ N(µ, σ2)

• Variance of mean: σ2

n

• Variance of median: πσ2

2n

=⇒ favour computing mean (min sq loss) versus computing median (min abs
loss) for either sq or abs loss!



Academy of PhD Training in Statistics: Statistical Machine Learning — Supervised Learning

Model fitting: statistical methods

Do not blindly perform ERM if ∃ plausible probabilistic model!

Unsurprisingly, if assumptions of full probabilistic model are approximately
satisfied, then full likelihood or Bayesian methods usually give better model fit
and better predictive performance.

Trivial Example: Y ∼ N(µ, σ2)

• Variance of mean: σ2

n

• Variance of median: πσ2

2n

=⇒ favour computing mean (min sq loss) versus computing median (min abs
loss) for either sq or abs loss!



Academy of PhD Training in Statistics: Statistical Machine Learning — Supervised Learning

Regularisation

Note standard approaches to regularisation (see APTS High-dim stats module)
apply to machine learning too:

arg min
θ∈Θ

∑
(x,y)∈D

L(y, f(x | θ)) + λC(θ)

where C(θ) measures model complexity; λ controls extent of regularisation.

eg, ridge regression, C(θ) = ∥θ∥2
2; or lasso regression, C(θ) = ∥θ∥1
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Proper scoring rules (I)

Not all losses created equally!

As statisticians, we should care if whole probabilistic forecast is good, not just
point estimate. Losses which are proper scoring rules (Gneiting and Raftery, 2007)
ensure calibration.

Let P be the space of probability distributions on Y. Scoring rule is function

S : P × Y → R

giving numerical value to probabilistic prediction P ∈ P and associated outcome
y ∈ Y.

A scoring rule is said to be a proper scoring rule if

EY | XS(πY | X , Y ) ≥ EY | XS(P, Y ) ∀ P ∈ P

The rule is said to be strictly proper when equality occurs if and only if P ≡ πY | X .
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Proper scoring rules (II)

Regression:

• square loss: proper

• absolute loss: proper

• likelihood: strictly proper

Classification:

• 0-1 loss: proper

• cross entropy: strictly proper

• Brier: strictly proper
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Proper scoring rules: example (based on Štrumbelj, 2018)
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Limitations
“Remember that all models are wrong; the practical question is how wrong do
they have to be to not be useful.”

— Box and Draper (1987), pp.74
“[…] all models are approximations. Essentially, all models are wrong, but
some are useful. However, the approximate nature of the model must always
be borne in mind.”

— Box and Draper (1987), pp.424

• fewer assumptions does notmean ∃ universally best method;
• universal consistency is not get out of jail free: no such thing as infinite data!
• small sample size settings can benefit from simpler models and more
assumptions.

Wolpert (1996) “no free lunch theorems”: for any learning method there exists a
πXY for which it will be arbitrarily bad.
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Theorem 7.1, Devroye et al. (1996)

Let ε > 0 be an arbitrarily small real value. For any integer n and classification
rule gn, there exists a distribution πXY (for Y binary) with Bayes error zero,
E⋆ = 0, such that

Ēn = EDn [EXY [L(Y, gn(X | Dn))]] ≥ 1
2

− ε

when L is 0-1 loss.

That is, for any sample size n there exists a distribution πXY for which the
learning method performs arbitrarily badly.
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