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Welcome to the Statistical Machine Learning module on the Academy for PhD Training in
Statistics.

The 2023–24 module is scheduled to run from 1st–5th September 2025 at the University
of Southampton. Any administrative queries regarding the week should be directed to the
APTS organisers.

This preliminary material is provided to offer a little background/motivation for the course
itself and to introduce you to thinking about the core machine learning problem via a sim-
ple toy example.

Section 1 is selectively reproduced from the notes for the main course and provides the
background/motivation. Section 2 and 3 explain what topics you should be familiar with.
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Section 4 is a very gentle technical excursion into predictive accuracy, using a toy example.
Note that it is probable you are already familiar with all the topics discussed, especially if
you have attended some of the earlier APTSweeks: the intention is to provide a very simple
example that you can understand deeply and use as a mental picture when studying the
course itself, since from the outset we will embark on a more abstract and general learning
theoretic development.

However, naturally people embarking on a PhD in Statistics often come from multifarious
backgrounds, so it is possible this material also highlights a gap you may wish to fill to
ensure you get the most from the course.

You can download these notes in PDF, but note that you lose access to the live code features
of this web version which are critical for this preliminary material.

1 The module
Aims: Thismodule introduces students tomodern supervisedmachine learningmethodol-
ogy and practice, with an emphasis on statistical and probabilistic approaches in the field.
The course seeks to balance theory, methods and application, providing an introduction
with firm foundations that is accessible to those working on applications and seeking to
employ best practice. There will be exploration of some key software tools which have fa-
cilitated the growth in the use of these methods across a broad spectrum of applications
and an emphasis on how to carefully assess machine learning models.

Learning Outcomes: Students following this module will gain a broad view of the su-
pervised statistical machine learning landscape, including some of the main theoretical
and methodological foundations. They will be able to appraise different machine learning
methods and reason about their use. In particular, students completing the coursewill gain
an understanding of how to practically apply these techniques, with an ability to critically
evaluate the performance of their models. Students will also have an insight into the ex-
tensive software libraries available today and their use to construct a full machine learning
pipeline.

Prerequisites

To undertake this module, students should have:

• at least one undergraduate level course in probability and in statistics;
• standard undergraduate level knowledge of linear algebra and calculus;
• solid grasp of statistical computing in R;
• knowledge of statistical modelling, including regression modelling (eg. APTS Statis-
tical Modelling course);

• some basic understanding of optimisation methods beneficial, but not essential.

As preparatory reading, the enthusiastic student may choose to browse An Introduction to
Statistical Learning (James et al., 2013) (freely and legally available online), which covers
some of the topics of the course at a more elementary and descriptive level.

Textbooks at roughly the level of the course include:

• The Elements of Statistical Learning (Hastie et al., 2009)
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• Pattern Recognition and Machine Learning (Bishop, 2006)
• Machine Learning: A Probabilistic Perspective (Murphy, 2012)

1.1 Live code
In this course, we consider code to be a first class citizen in your learning: to be able to
apply or understand the content it is often helpful to be able to see and playwith illustrative
code. We will be using the statistician’s favourite tool, R (R Core Team, 2021)! Some code,
especially if it is long-running, will simply be displayed inline like the following:

x <- rnorm(10)
mean(x)

However, where a fast running toy example is possible, this will be used and provided in
“live code” blocks, where you can make changes and re-run to observe the effect. These
appear like this:

>> Live code online: https://www.louisaslett.com/StatML/notes/ <<

You can run the code inline by clicking the “Run code!” button without leaving these notes
and losing your flow. Also, since the code is remotely executed thiswill work evenonmobile
devices like an iPad or iPhone where R is not supported.

Where there is more than one live block on the page, you can link them together into a
persistent session, akin to an RStudio Notebook or Jupyter Notebook, by enabling the “Per-
sistent” toggle. Note that like those other notebook environments, the order in which you
run blocks matters, so that if you run a second block trying to access a variable x before the
first block assigns to it you will encounter an error. Therefore, when needed you can eval-
uate all preceding blocks with the “Run previous” button which appears when you enable
a persistent session. To see this, click the “Persistent” toggle on and try running the next
block: note this results in an error, because the first code block has not been run with per-
sistence enabled. Therefore, run the first block before trying this one again, which should
result in the value of x printing correctly:

>> Live code online: https://www.louisaslett.com/StatML/notes/ <<

It is possible to include plots and other more complex output too. To see this, modify
the code above to add hist(x) on line 2, click the “Run code!” button again and either
“Zoom” or scroll to see the histogram (note, you don’t need to rerun the first block this
time, because your session now has x defined).

These preliminary notes do not require a persistent session, so turn that toggle off again
before continuing.

The server running these code chunks is a shared and public resource, so please be consid-
erate. You should also assume that anything you run may be publicly visible, so do not run
anything confidential!

1.2 What is “Statistical Machine Learning”?
As LarryWasserman (2014) puts it, “Statistics is the science of learning from data. Machine
Learning (ML) is the science of learning from data. These fields are identical in intent
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although they differ in their history, conventions, emphasis and culture.”

This course is primarily concerned with supervised machine learning which, despite the
modern buzz, has been around for a considerable time in other guises. An early related
moniker was “pattern recognition” and indeed, even as early as 1968 one can find review pa-
pers packed withmethods that are familiar to themodern practitioner of machine learning
(Nagy, 1968). It was recognised even then that this was something of a distinct field that
draws on many others, including especially statistics.

Around this time there was also cogitation within the statistics community, with some
encouraging a broadening of scope from the focused mathematical ideals of the day: in
his treatise “The Future of Data Analysis”, John Tukey (1962) advocated passionately for
statistics to shift focus. JeromeFriedman (1998) revived the debate aboutwhether statistics
should embrace the other blossoming disciplines seeking to learn from data, with pattern
recognition being joined by “data mining”, “machine learning” and “artificial intelligence”
in a list of related fields sharing similar goals. Contemporaneously, Leo Breiman (2001)
was more forthright, arguing clearly in favour of statistics embracing algorithmic methods
and a focus on predictive accuracy which is common in machine learning. Most recently,
Brad Efron (2020) wrote a compelling account relating modern machine learning methods
to traditional statistical approaches.

However, there are certainly critics:

“Machine learning is statistics minus checking of models and assumptions.”

*Brian Ripley, useR! 2004, Vienna*

Although this epigrammatic characterisation ofmachine learning is oft humorously quoted
and perhaps a little unfair, it does reflect the fact that a machine learning analysis can
exhibit a markedly different feel to other forms of statistical modelling. A machine learner
may (perhaps unwisely) retort that many black box algorithmic methods do not have a
specific model and make minimal assumptions.

It is interesting to read the above references for some historical context, but it should be
uncontroversial to say that today there are sufficiently many statisticians working on ma-
chine learning theory, methods, and applications, that statistics certainly has a voice in
the machine learning community. Indeed, it has “had a stimulating effect on traditional
theory and practice” (Efron, 2020).

Suffice to say, we will therefore avoid attempting to dichotomise statistics and machine
learning, instead attempting only a loose characterisation of what we mean by supervised
machine learning for the purposes of this course: a collection of modelling approaches
predominantly concerned with accurate predictive modelling, frequently employing algo-
rithmic or black-boxmethodologywhich does not necessarily have interpretable parametri-
sations, and where parameter uncertainty is often of secondary concern or neglected. It is
a subtle distinction, but it does matter that supervised machine learning is concerned pri-
marilywith prediction (whilst statistics is broader and encompasses explanatorymodelling,
estimation and attribution too (Efron, 2020; Shmueli, 2010))

What therefore of the “Statistical” prefix in the course title? From the perspective of a
statistician, an unfortunate feature of some (not all) corners of machine learning practice
is a failure to fully evaluate the uncertainty of predictions produced by these methods, a
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disregard for proper scoring rules, or a contentment to set aside a mathematical treatment
of the underpinning theory and methods. As such, the prefix “Statistical” is to highlight
the emphasis we will place upon uncertainty quantification in predictive modelling and a
desire to develop some mathematical understanding of foundations where it helps.

Work attempting to trace some of the the historical development and coexistence of ma-
chine learning and statistics are in Malik (2020) and Jones (2018). The Introduction in Vap-
nik (1998) argues the historical branching of machine learning theory from its statistics
origins happened through four key discoveries in the 1960s-80s.

1.3 Notation
As far as possible, the whole course will use a consistent notation, with any deviation from
it explained at the time.

• Scalars: 𝑥, 𝑥𝑖 , 𝑥𝑖 𝑗 , 𝑦𝑖 , 𝛽𝑖 , ...

• Vectors: x, y, 𝜷, ...

– follow the standard convention that all are column vectors
– transpose x𝑇 is row vector
– x𝑖 indicates a vector, the elements of which are 𝑥𝑖 𝑗

• Matrices: X,Y, ...

– matrix transpose: X𝑇

– 𝑖-th row entries: x𝑖 (as column vector)
– 𝑗-th column entries: x· 𝑗
– (𝑖 , 𝑗)-th element: 𝑥𝑖 𝑗

• Random variables: 𝑋,𝑌, 𝜀, ...

– clear from context whether a random scalar/vector/matrix/…
– clear from context whether Greek letters are random variables
– the probability measure associated with a random variable 𝑋 is 𝜋𝑋 .

• Spaces: 𝒳 ,𝒴 ,R,Z,R𝑑 = R × · · · × R︸        ︷︷        ︸
𝑑 times

, ...

• Estimator: denoted by a hat, 𝑓 (·), �̂�, ...
• Functions:

– 1{𝐴} is the indicator function for 𝐴 being true.
– if 𝑓 (𝑥) has vector valued output, then 𝑓𝑗(𝑥) denotes the 𝑗-th component of the

output.
– where necessary an arbitrary function, 𝑓 (𝑥), will be distinguished from a prob-

ability density function (pdf), 𝑓𝑋(𝑥), by the presence or absence of a random
variable subscript.

– the cumulative distribution function (cdf) is denoted 𝐹𝑋(𝑥).
• Other:

– 𝐴 ≔ 𝐵 reads “𝐴 is defined to be 𝐵”.
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– For a finite set ℐ, |ℐ | denotes the cardinality of the set.

1.4 Problem setting
We first set out the general problem statement and the usual approach to modelling
adopted in a supervised machine learning setting.

The most common supervised machine learning problems fall broadly under three types
(Vapnik, 1998):

• Regressionmodels a quantitative outcome.

– What value is a house based on geographic/house information;
– How long until a patient is discharged from hospital?

• Classificationmodels a qualitative outcome.

– Medics predicting a disease from test results;
– Is the email just sent to my address spam?
– Bank predicting if borrower will default;
– Identifying a number from image of handwritten value.

• Density estimationmodels a full probability distribution.

There are of course specialisations within these relating to the nature of the data, so the
first regression example is a spatial regression problem, whilst the second is a survival
regression problem, etc.

Supervised learning starts from the premise that we have access to a set of 𝑛 observations
of:

• features / predictors from some space 𝒳, eg:

– 𝒳 ⊂ R𝑑

– or, 𝒳 can be a tensor in deep learning

• and corresponding outcomes / responses / targets from some space𝒴, eg:

– 𝒴 ⊂R =⇒ regression;
– in particular,𝒴 = {1, . . . , 𝑔} where 𝑔 ≥ 2 =⇒ classification, with each qualita-

tive outcome assigned a numeric label;
– or, for 𝑔 = 2 we often1 take𝒴 = {0, 1}
– or,𝒴 can be a tensor in deep learning

The full dataset we use to ‘learn’ is thus 𝒟 =
((x1 , 𝑦1), . . . , (x𝑛 , 𝑦𝑛)) ⊂ (𝒳 × 𝒴 )𝑛 , where x𝑖

is a vector of length 𝑑,

x𝑖 = (𝑥𝑖1 , . . . , 𝑥𝑖𝑑)𝑇 ∈ 𝒳

We denote all observations of a single feature as x· 𝑗 ,
1You will encounter some texts which assign ±1 rather than {0, 1} as the response in binary classification

problems.
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x· 𝑗 = (𝑥1𝑗 , . . . , 𝑥𝑛𝑗)𝑇

With this setup, we proceed to specify a model by assuming there is a functional relation-
ship connecting features and response, together with an error/uncertainty process. Our
objective is to learn this ‘true’ but unknown function. An example setting falling under
each type above is:

• Regression: eg we take 𝑓 : 𝒳 → 𝒴 directly, often with an additive noise assumption
so that

𝑌 = 𝑓 (x) + 𝜀

where 𝜀 is a random error term. If the error is assumed to have zero mean, the func-
tion 𝑓 is the conditional expectation,

E[𝑌 | 𝑋 = x] = 𝑓 (x)

• Classification:

– probabilistic classifier, eg: we take 𝑓 : 𝒳 → [0, 1]𝑔 as connecting features to the
probability of each response in a categorical distribution,

𝑌 | 𝑋 = x ∼ Categorical
((𝑝1 , . . . , 𝑝𝑔) = 𝑓 (x))

where
∑

𝑖 𝑝𝑖 = 1, with 𝑝𝑖 = P(𝑌 = 𝑖 | 𝑋 = x).
Note in the binary case with𝒴 = {0, 1},

𝑌 | 𝑋 = x ∼ Bernoulli
(
𝑝 = 𝑓 (x))

so that
𝑝 = P(𝑌 = 1 | 𝑋 = x) = E[𝑌 | 𝑋 = x] = 𝑓 (x)

giving a natural correspondence with the regression setting.

– scoring classifier, eg: sometimes there is no attempt to directly model the prob-
ability above. Instead, a real-valued score with no formal interpretation is as-
signed to each response label, the intention being that the highest scoring is
(in some loosely defined sense) ‘most likely’. In other words in the binary case,
𝑓 : 𝒳 →R such that

𝑦 =

{
0 if 𝑓 (x) ≤ 0

1 if 𝑓 (x) > 0

• Density estimation: eg conditional modelling of

𝑌 | 𝑋 = 𝑥 ∼ P(𝑌 | 𝑋 = 𝑥)

possibly by jointlymodellingP(𝑋,𝑌)with someprobability density function 𝑓𝑋𝑌(x, 𝑦)
(note a density, here, and function, above, are distinguished by the presence or ab-
sence of the random variable subscript).
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In some sense the last of these subsumes the former two (and more) and is the most gen-
eral setting: indeed, in all cases we take there to be some true but unknown probability
measure, 𝜋𝑋𝑌 , which generates the data and usually assume2 that each observation (x𝑖 , 𝑦𝑖)
is an independent and identically distributed (iid) realisation from this measure.

Framing the problem as that of density estimation via a full generative probability model
may be most familiar and comfortable for a statistician. Indeed, thinking of the classifica-
tion problem under this formulation leads to a collection of methods termed generative ap-
proaches, whereby amodel is constructed for 𝑋 | 𝑌 = 𝑖 (or the joint) and predictionmade by
a simple application of Bayes’ Theorem. This is in contrast to direct modelling of 𝑌 | 𝑋 = x
which is often advocated and these are termed discriminative approaches. However, in real-
ity neither approach universally dominates (Ng and Jordan, 2001).

As alluded to above, in a machine learning setting nearly all the focus of this modelling
exercise is for prediction of future observations. In these future settings, it is assumed we
will have access to the predictors, x, but not the response, 𝑦, and we seek a model which
can generalise well to unseen data.

We will typically approach these problems by directly estimating 𝑓 (·) ≈ 𝑓 (·), though in the
classification case some methods instead only attempt to directly model the response and
not the probabilistic estimate (these are somewhat antithetical to our statistical predilec-
tion). We will need to select some class of models to which we believe the true function
belongs, 𝑓 ∈ ℱ , which may be parametrised by some parameter 𝛽, 𝑓 (· | 𝛽). You will see
some machine learning literature refer to this space of models as the hypothesis space.

2 Probability essentials
You should ensure that you are comfortable with all the elementary results in probabil-
ity theory, including notions of independence, mutual exclusivity, conditional probability;
together with the standard methods of manipulating probability statements, including de-
composing unions and intersections of events, event complements, the law of total proba-
bility and of course Bayes’ Theorem.

You should also be comfortable with notions of event probabilities given both discrete and
continuous probability distributions. If any of this background is in doubt, referencing
Chapters 1–4 of DeGroot and Schervish (2012) would provide sufficient coverage.

In a slight abuse of terminology we will interchangeably refer to 𝜋𝑋 as the measure or dis-
tribution of the random variables 𝑋, and denote the standard probability density function
as 𝑓𝑋(𝑥), the subscript distinguishing this density from a standard function.

It will be of particular importance to be comfortable with interpreting and manipulating
expectations of random variables. The vast majority of both theoretical and practical quan-
tities of interest in statistical machine learning are expressed as expectations in one form
or another. Given its centrality to learning theory, in this course we will be particularly
careful to be explicit about what distribution every expectation is with respect to (espe-
cially as I have observed this being a source of confusion among students). The standard

2Time series data being a notable exception, among others.
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definition3 of expectation will therefore be written as:

E𝑋
[
𝑔(𝑋)] ≔ ∫

𝒳
𝑔(𝑥) 𝑑𝜋𝑋

=
∫
𝒳
𝑔(𝑥) 𝑓𝑋(𝑥) 𝑑𝑥

with the subscript on E making clear that here the expectation is with respect to the ran-
dom variable 𝑋, whose measure is 𝜋𝑋 and with density 𝑓𝑋(𝑥). The first line is always true,
the second line naturally only applying if the corresponding density function exists in a
continuous setting.

3 Regression
In these preliminary notes, we will explore informally some of the concepts you will tackle
rigorously in the course. We’ll do that exploration using standard linear regression, since
you should be familiar with this already, and we will introduce further specialised machine
learning models during the course.

You may have encountered linear regression in detail during earlier APTS courses (espe-
cially Statistical Modelling, Ogden et al., 2021) or your previous studies. Standard linear
regression can of course address the general machine learning regression problem set out
above, with 𝒳 ⊆ R𝑑, 𝒴 = R and with the assumption that additive noise is normally dis-
tributed,

𝑌 = 𝑓 (x) + 𝜀, 𝜀 ∼ N(𝜇 = 0, 𝜎2)

Data is usually arranged in a design matrix X ∈ R𝑛×𝑑 for the features, with observations
in rows and features in columns, and as a vector of responses y ∈ R𝑛 . Then, we write
𝑓 (x) = X𝜷 with the regression coefficients 𝜷 ∈ R𝑑 parameterising the model. The per-
observation residuals are simply 𝜀𝑖 = 𝑦𝑖 − x𝑇𝑖 𝜷.

Given all the above, there is a closed form solution to the maximum likelihood estimation
of the coefficients:

�̂� =
(
X𝑇X

)−1
X𝑇y

You should have encountered the duality whereby this is also the solution to the “least
squares” problem: that is, where we ignore the probabilistic model on 𝜀 and instead simply
seek to minimise

∑𝑛
𝑖=1 𝜀

2
𝑖 . We will see during the course that many models in machine

learning which lack a formal probabilistic structure essentially rely on something akin to
this second approach to the problem, an idea called empirical risk minimisation, which we
will cover.

3Strictly speaking this is not the definition of expectation, but rather is the so-called law of the unconscious
statistician which can be proved from the rigorous definition of expectation.
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Armed with a fitted model, a statistician’s first reflex may be to check the model assump-
tions (residual Normality and homoskedasticity, linearity, etc) and then to examine the
significance of coefficients (or their posteriors in a Bayesian analysis). It is of course still
important to do these things if you are fitting a probabilistic machine learning model, but
in reality the ultimate litmus test for evaluating the model in a machine learning setting
will typically be assessments of its predictive accuracy. Using the average of the squared
residuals may be a simplest way to do so in this example.

4 Toy predictive regression
Note that “toy” is not meant disparagingly here: it is simply an indication that we want to
use a sufficiently simple example that nothing is obfuscated and the core message can be
understood easily. The core message we aim to unpack here is the subtle variations in the
definition of prediction errors that we will study in some depth during the course, since
these are all closely related and often treated a little loosely at undergraduate level.

4.1 The model
Therefore, let us consider the very simple setting of univariate regression modelling. Imag-
ine that there is a true data generating process as follows:

𝑋 ∼ Unif([−0.5, 1])
𝑓 (𝑥) = 1

2
𝑥2 − 𝑥 + 1

(𝑌 | 𝑋 = 𝑥) ∼ N(𝜇 = 𝑓 (𝑥), 𝜎 = 0.5)

which we use to simulate a dataset of size 𝑛,𝒟𝑛 = {(𝑥1 , 𝑦1), . . . , (𝑥𝑛 , 𝑦𝑛)}, by iid sampling.

Recall that this does fall within the linear modelling framework, since the above model is
linear in the parameters. Put simply, if we define the variable 𝑧 ≔ 𝑥2 then 1

2 𝑥
2 − 𝑥 + 1 =

1
2 𝑧−𝑥+1which is a linearmodel in the variables 𝑥, 𝑧. In practice this is achieved by creating
a design matrix:

X ≔
©­­«
1 𝑥1 𝑥21

...
1 𝑥𝑛 𝑥2𝑛

ª®®¬
Of course, if we fail to include the square transformation then a standard linearmodel using
only 𝑥𝑖 directly would be misspecified for this setting. In principle we can include higher
powers and other transformations too in the same fashion, by adding additional columns
to the design matrix.

Under the above model, 95% of observations would be expected to fall within the shaded
grey region on the following plot, with the black line showing the conditional expectation
of 𝑌 given a particular value 𝑥.

10



0.0

0.5

1.0

1.5

2.0

−0.5 0.0 0.5 1.0
x

y

To highlight a core concern in machine learning, we will attempt to fit two models to a
sample of simulated data:

𝑓 (1)(𝑥) = �̂�0 + �̂�1𝑥

𝑓 (2)(𝑥) = �̂�0 +
5∑
𝑗=1

�̂� 𝑗𝑥 𝑗

4.2 Apparent error
Try running the following code and examine the output. It will simulate 𝑛 = 30 observa-
tions from this model and fit 𝑓 (1)(𝑥) (ie the misspecified linear model) as well as 𝑓 (2)(𝑥) (ie
the overparameterised linear model). It will then compute the mean square error in each
case.

>> Live code online: https://www.louisaslett.com/StatML/notes/ <<

Imagine that we actually knew the true model exactly. Due to the Normally distributed
error process we would never be able to make exact predictions, but what is the lowest
mean square error we could hope to achieve? Youmay have seen before that predicting the
mean value (ie the fitted line value) is the best option when minimising mean square error
(MSE), in which case we would have:

11
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E𝑌 | 𝑋=𝑥

[(
𝑌 − 𝑓 (𝑥)

)2]
=
∫
R

(
𝑌 − 𝑓 (𝑥)

)2
𝑑𝜋𝑌 | 𝑋=𝑥

where 𝜋𝑌 | 𝑋=𝑥 is simply Normal with mean 𝑓 (𝑥). In other words, the above integral is just
the central second moment of the Normal distribution, in this case 𝜎2 = 0.252 = 0.0625.

With the random seed used in the live code above, you should have found theMSE ofmodel
2 is 0.0478. Was it simply a fluke that we appear to have a better MSE under model 2 than
under the true model? Remove the set.seed() line above and rerun a few times to see
what MSE you achieve: you should find that most (though not all) of the time it is below
0.0625, so apparently better than knowing the truth.

Of course, this is clearly not the case, because we actually computed what is referred to
as the training or apparent error: that is, the error made by the model when predicting
the same data that was used to fit it. As we will see in the course (and you may have seen
before), the apparent error is a biased estimate of the true error you would expect to see
when predicting future responses 𝑦, given only 𝑥.

4.3 Generalisation error
4.3.1 Fixed design

Since this is a simulation experiment, we can actually explore what happens when we ran-
domise the responses again, according to the model.

>> Live code online: https://www.louisaslett.com/StatML/notes/ <<

The above shows that the error estimate in both cases was optimistic, particularly so for
𝑓 (2)(𝑥), so that both appear to have roughly similar performance now. However, what is
this error quantity? This is what we call the estimated fixed design generalisation MSE. In
other words, we are assessing the model’s ability to predict new responses 𝑦 at the same
values of 𝑥 that were used to fit themodel. This is a quantity that is very frequently studied
in statistical modelling because it is more tractable to compute (the marginal distribution
𝜋𝑋 not needing to be accounted for).

4.3.2 Random design

However, if we are building a machine learning model because we are primarily focused on
prediction, it is not unreasonable to actually be interested in how the model generalises to
new feature values, not just new responses at the same design points. What we want is the
random design generalisation MSE:

E𝑋𝑌

[(
𝑌 − 𝑓 (𝑋)

)2]
Note that here 𝑓 is the fixed fitted model (either model 1 or model 2) and the randomness
is entirely in the values being predicted under the fixed model.
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Since we are running a toy simulation example, we can again estimate this quantity, now
re-simulating both 𝑋 and 𝑌 (this amounts to a Monte Carlo estimate of the integral in the
expectation).

>> Live code online: https://www.louisaslett.com/StatML/notes/ <<

Interestingly, this time the models behave differently: 𝑓 (1)(𝑥) seems to generalise outside
the training observation feature values better than 𝑓 (2)(𝑥), whose MSE has got worse still.

4.4 Expected error
Of course, crucially this may be ‘luck’ for this particular training data,𝒟30 (which has been
held fixed across the different live code boxes by the fixed seed). When working on an
applied problem, of course in some sense the only performance which matters is the per-
formance of themodel fitted to the datawe have in hand. However, whenwe are developing
newmethodology or are interested in the behaviour of a model in general, wemay bemore
interested in how it performs across many different sets of training data from the same
problem. That is, we want to really take a further expectation with respect to the training
data:

E𝐷𝑛

[
E𝑋𝑌

[(
𝑌 − 𝑓 (𝑋)

)2] ]
where 𝐷𝑛 ≔ ((𝑋1 , 𝑌1), . . . , (𝑋𝑛 , 𝑌𝑛)) is a random variable denoting a sample of 𝑛 training
observations, whose joint distribution is 𝜋𝑛

𝑋𝑌 ≔ 𝜋𝑋𝑌 × · · · × 𝜋𝑋𝑌︸              ︷︷              ︸
𝑛 times

, noting that 𝑓 depends

on the realisation of 𝐷𝑛 , that is 𝒟𝑛 , used to fit the model. This is called the expected er-
ror of the learning algorithm for this problem (it is no longer a property of a particular
dataset). We extend our code to produce a Monte Carlo estimate of this by repeatedly sam-
pling training data to refit the model, then also sampling test data to examine the random
design generalisation error.

In the following code we will actually keep track of the inner expectation separately, so we
can look at the variability induced by different training sets and see how often one model
outperforms, as well as computing the final overall expected error.

>> Live code online: https://www.louisaslett.com/StatML/notes/ <<

Even though model 1 is misspecified for this problem, it appears to perform better than
model 2 most of the time, despite the function space spanned by model 2 including the
true model. We want to try to understand what is happening here, so that we can use it to
guide our machine learning modelling.

4.5 Bias-variance decomposition
To do this, we want to decompose the MSE. As an exercise show that:
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E𝐷𝑛

[
E𝑋𝑌

[(
𝑌 − 𝑓 (𝑋)

)2] ]
= E𝐷𝑛E𝑋𝑌

[(
𝑓 (𝑋) − E𝐷𝑛 𝑓 (𝑋)

)2]
squared bias of model

+ E𝐷𝑛E𝑋𝑌

[(
E𝐷𝑛 𝑓 (𝑋) − 𝑓 (𝑋)

)2]
= E𝑋𝑌Var𝐷𝑛 𝑓 (𝑋) variance of model fit

+Var𝑋𝑌(𝜀) irreducible error

Hints:

• Start off by writing 𝑌 as 𝑓 (𝑋) + 𝜀, expand the square and simplify where possible.
• When fully simplified you should have the final variance term above, as well as a term

E𝐷𝑛

[
E𝑋𝑌

[(
𝑓 (𝑋) − 𝑓 (𝑋)

)2] ]
• Try to further decompose this term by adding and subtracting E𝐷𝑛 𝑓 (𝑋) inside the
square the term (that is the expected prediction from models over many training
samples of size 𝑛). Tip: you’ll want to gather the four terms into two and expand
the square again, simplifying until you reach the final expression above.

Don’t worry if you get stuck! We’ll prove this in the lectures during the course, but it is
good to try yourself before seeing it.

The decomposition above shows that the overall expected mean square error is comprised
of 3 key ingredients:

• The bias of the model you are fitting to the problem: in other words, is the model
you are fitting able (on average across training sets) to learn the true non-random
functional part of the relationship?

• The variance of the model you are fitting to the problem: in other words, how much
do the fitted model predictions differ (on average across training sets)?

• Finally the so-called irreducible error, which is the randomnoise in the problemwhich
we could never hope to model.

The beauty of our toy problem is that we can simulate all the terms above. The code gets
a bit more complicated, but we can estimate the bias and variance of the two models, and
also plot the per-training set biases and variances to see variability.

To do this, we first Monte Carlo estimate E𝐷𝑛 𝑓 (𝑋). This means we fit parameters �̂�
(𝑖)

for
the 𝑖-th of 𝑁 realisations of 𝐷𝑛 (ie repeatedly generate training samples of size 𝑛). Note
that,
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E𝐷𝑛 𝑓
(2)(𝑥) ≈ 1

𝑁

𝑁∑
𝑖=1

©­«�̂�(𝑖)0 +
5∑
𝑗=1

�̂�(𝑖)𝑗 𝑥 𝑗ª®¬
=

∑𝑁
𝑖=1 �̂�

(𝑖)
0

𝑁
+

5∑
𝑗=1

∑𝑁
𝑖=1 �̂�

(𝑖)
𝑗

𝑁
𝑥 𝑗

= ¯̂𝛽0 +
5∑
𝑗=1

¯̂𝛽 𝑗𝑥 𝑗

In other words, the empirical estimate of the term E𝐷𝑛 𝑓 (𝑋) simply requires averaging the
coefficients of the models fitted to each training sample.

>> Live code online: https://www.louisaslett.com/StatML/notes/ <<

These results give a clear picture of what is happening:

• Model 1 is misspecified and therefore suffers bias in the fit, whereas Model 2 con-
tains the truth within its function space and therefore has effectively zero bias (the
≈ 10−5 > 0 value arises as this is a Monte Carlo approximation of the expectation).

• However, model 1 being so simple has low variance, substantially lower than Model
2.

• In particular, note the scales of the bias and variance axes: the reduction in bias
achieved by Model 2 is completely swamped by the increase in variance it suffers.

• Overall, Model 1 despite its simplicity and misspecification achieves a lower overall
error rate for predictive purposes.

Play around with the above live code boxes. In particular, you can change any of the prob-
lem setup variables (denoted by a comment starting # < =) in order to vary the experiment.
For example, you may want to start by changing model 2’s formula to:

f2 <- formula(y ~ x + x2) # < = model 2

In other words, perfectly specifying the model. You should find the bias remains zero and
the variance reduces, giving it superior expected error tomodel 1, though it still has slightly
higher variance (now the differences in bias outweigh those in variance).

In essence, a great deal of machine learning, with its obsessive focus on predictive perfor-
mance, revolves around finding better ways to optimise this trade off, or find methodolo-
gies which tackle one part of the problem head-on (eg variance reduction methods). In the
course, we will first cover learning theory (for which this preliminary material provides a
good mental picture), followed by methodologies for model fitting. The other key ingredi-
ent is practical estimation of the above errors: all the above experiments were only possible
because we were simulating from a known truth, a luxury we don’t have in reality!

5 Other background
We will assume comfort with linear regression and logistic regression in the course, the
APTS StatisticalModelling (Ogden et al., 2021) or any standard undergraduate course being

15

https://www.louisaslett.com/StatML/notes/


more than enough background. The initial learning theory we cover (but with an emphasis
on machine learning) is intertwined with aspects of decision theory from APTS Statistical
Inference (Shaw and Rougier, 2020), though we will cover everything required in a self-
contained way in the couse. We will touch on ideas of regularisation in a different setting,
but related to, the material in APTS High-dimensional Statistics (Yu, 2021), again that not
being pre-requisite as we will cover necessary aspects. Finally, it would be helpful to have a
basic knowledge of gradient descent, such as from APTS Statistical Computing (Wilkinson
and Wood, 2021) or any standard undergraduate course, and we will make use of simple
Monte Carlo and Bootstrap methods, APTS Computer Intensive Statistics (Jenkins et al.,
2021) or any standard undergraduate course being more than enough.
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