Imprecise system reliability using the survival signature
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ABSTRACT: The survival signature has been introduced to simplify quantification of reliability of systems
which consist of components of different types, with multiple components of at least one of these types. The
survival signature generalizes the system signature, which has attracted much interest in the theoretical reliabil-
ity literature but has limited practical value as it can only be used for systems with a single type of components.
The key property for uncertainty quantification of the survival signature, in line with the signature, is full sepa-
ration of aspects of the system structure and failure times of the system components. This is particularly useful
for statistical inference on the system reliability based on component failure times.

This paper provides a brief overview of the survival signature and its use for statistical inference for system
reliability. We show the application of generalized Bayesian methods and nonparametric predictive inference,
both these inference methods use imprecise probabilities to quantify uncertainty, where imprecision reflects the

amount of information available. The paper ends with a discussion of related research challenges.

1 INTRODUCTION

In mathematical theory of reliability the main focus
is on the functioning of a system given the function-
ing, or not, of its components and the structure of
the system. The mathematical concept which is cen-
tral to this theory is the structure function (Barlow &
Proschan 1975). For a system with m components, the
state vector is = (21, %a,...,2Zy,) € {0,1}™, with
x; = 1 if the ith component functions and z; = 0
if not. The labelling of the components is arbitrary
but must be fixed to define x. The structure function
¢ :{0,1}"™ — {0,1}, defined for all possible z, takes
the value 1 if the system functions and O if the sys-
tem does not function for state vector z. Most prac-
tical systems are coherent, which means that ¢(x) is
not decreasing in any of the components of z, so sys-
tem functioning cannot be improved by worse perfor-

mance of one or more of its components. The assump-
tion of coherent systems is made throughout this pa-
per and is convenient from the perspective of uncer-
tainty quantification for system reliability. It is further
logical to assume that ¢(0) = 0 and ¢(1) = 1, so the
system fails if all its components fail and it functions
if all its components function.

For larger systems, working with the full structure
function may be complicated, and one may partic-
ularly only need a summary of the structure func-
tion in case the system has exchangeable components
of one or more types. We use the term ‘exchange-
able components’ to indicate that the failure times
of the components in the system are exchangeable
(De Finetti 1974). Recently, we introduced such a
summary, called the survival signature, to facilitate
reliability analyses for systems with multiple types
of components (Coolen & Coolen-Maturi 2012). In



case of just a single type of components, the survival
signature is closely related to the system signature
(Samaniego 2007), which is well-established and the
topic of many research papers during the last decade.
However, generalization of the signature to systems
with multiple types of components is extremely com-
plicated (as it involves ordering order statistics of dif-
ferent distributions), so much so that it cannot be ap-
plied to most practical systems. In addition to the pos-
sible use for such systems, where the benefit only
occurs if there are multiple components of the same
types, the survival signature is arguably also easier to
interpret than the signature.

Consider a system with K > 1 types of compo-
nents, with m;, components of type k € {1,..., K}

and S°& my = m. Assume that the random fail-
ure times of components of the same type are ex-
changeable (De Finetti 1974). Due to the arbitrary
ordering of the components in the state vector, com-
ponents of the same type can be grouped together,
leading to a state vector that can be written as z =
(z',22,...,2"), with 2 = (2}, 25,. .. 2F, ) the sub-
vector representing the states of the components of
type k.

The survival signature for such a system, de-
noted by ®(l4,...,lx), with [y =0,1,... my for k =
1,..., K, is defined as the probability for the event
that the system functions given that precisely [, of
its m; components of type k function, for each k €
{1,...,K} (Coolen & Coolen Maturi 2012). There
are (’Z’“) state vectors z" with > "% ¥ = [;. Let Slk
denote the set of these state vectors for components
of type k and let S;, ;. denote the set of all state
vectors for the whole system for which Y "% af = I,
k=1,...,K. We also introduce the notation [ =
(ly,... ,l K) Due to the exchangeability assumption
for the failure times of the m; components of type
k, all the state vectors z* € Sﬁ are equally likely to
occur, hence (Coolen & Coolen-Maturi 2012)
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LetCF €{0,1,...,m;} denote the number of com-
ponents of type % in the system that function at time
t > 0. Then, for system failure time 7,

Z Z DP(({Cr = 1})
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There are no restrictions on dependence of the failure
times of components of different types, as the prob-
ability P((i_,{C¥ = I1}) can take any form of de-
pendence into account, for example one can include
common-cause failures quite straightforwardly into
this approach (Coolen & Coolen-Maturi 2015). How-
ever, there is a substantial simplification if one as-
sumes that the failure times of components of differ-
ent types are independent, and even more so if one
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assumes that the failure times of components of type
k are conditionally independent and identically dis-
tributed with CDF F},(¢). With these assumptions, we
get

Tg>t

>3 o)
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The main advantage of the survival signature, in
line with this property of the signature for systems
with a single type of components (Samaniego 2007),
is that the information about the system structure is
fully separated from the information about function-
ing of the components, which simplifies related sta-
tistical inference as well as considerations of opti-
mal system design. In particular for study of sys-
tem reliability over time, with the structure of the
system, and hence the survival signature, not chang-
ing, this separation also enables relatively straight-
forward statistical inferences where even the use of
imprecise probabilistic methods (Augustin, Coolen,
de Cooman, & Troffaes 2014, Coolen & Utkin 2011)
is quite straightforward. Such methods have the ad-
vantage that imprecision for the system survival func-
tion reflects the amount of information available. The
next two sections briefly discuss such methods of sta-
tistical inference for the system failure time. First we
show an application of generalized Bayesian meth-
ods, with a set of prior distributions instead of a
single prior distribution. This is followed by a brief
discussion and application of nonparametric predic-
tive inference (Coolen 2011), a frequentist statistical
method which is based on relatively few assumptions,
enabled through the use of imprecise probabilities,
and which does not require the use of prior distribu-
tions. The paper ends with a brief discussion of re-
search challenges, particularly with regard to upscal-
ing the survival signature methodology for applica-
tion to large-scale real-world systems and networks.

2 IMPRECISE BAYESIAN INFERENCE

The reliability of a system, for which the survival sig-
nature is available, is quite straightforwardly quanti-
fied through its survival function, as shown in the pre-
vious section. We briefly consider a scenario where
we have test data that enable learning about the re-
liability of the components of different types in the
system, where we assume independence of the failure
times of components of different types. The numbers
of components in the system, of each type, that are
functioning at time ¢, denoted by C’f fork=1,..., K,
are the random quantities of main interest. One at-
tractive statistical method to learn about these random
quantities from test data is provided by the Bayesian



framework of statistics, which can be applied with
the assumption of a parametric distribution for the
component failure times (Walter, Graham, & Coolen
2015) or in a nonparametric manner (Aslett, Coolen,
& Wilson 2015). We briefly illustrate the latter ap-
proach.

Assume that there are m; components of type k in
the system, and we are interested in the probability
distribution of C¥. Suppose that n, components of
the same type k were tested, these are not the com-
ponents that are in the system but their failure times
are assumed to be exchangeable with those in the sys-
tem. We assume that for all tested components the
failure time has been observed, let sf denote the num-
ber of these components that still functioned at time .
A convenient and basic model for CF is the Binomial
distribution, where the probability of ‘success’, that
is a component still to be functioning at time ¢, can,
in the Bayesian framework, be conveniently mod-
elled as a random quantity with a Beta prior distribu-
tion. Different to the standard parameterization for the
Beta distribution, we define a Beta prior distribution
through parameters n,(f) and y,gog with as interpreta-
tions a pseudocount of components and the expected
value of the success probability, respectively. Hence,
these parameters can be interpreted in the sense that
the prior distribution represents beliefs reflecting the
same information as would result from observing n,(coz

components of which nfcozyl(ﬂog still function at time

t (Walter 2013). Doing this leads to straightforward
updating, using the test information consisting of ob-
servations of n; components of which s;; were still
functioning at time ¢. The updating results in a similar
Beta distribution as the prior, but now with parameter
values n,ift) = n,ioz + ny and y,(;? the weighted average

of y;(fg and sy, ;/ng, with weights proportional to n,goz

and ny, respectively. This leads to the posterior pre-
dictive distribution (Walter, Aslett, & Coolen 2016)

m
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This model can also relatively straightforwardly be
used with a set of Beta prior distributions rather than
a single one, a generalization fitting in the theory of
imprecise probability (Augustin, Coolen, de Cooman,
& Troffaes 2014). At each value of ¢ one calcu-
lates the infimum and supremum of the probability

P(CF = 1), | s¥) over the set of prior parameters,
with n,(coz € [ﬂ,(got),ﬁ,ioz] and y,g?t) € [gg,y,ﬁ?ﬁ, with the
bounds of these intervals chosen to reflect a priori

available knowledge and its limitations. The use of

such prior sets, with only an interval of possible val-
ues specified for each parameter, provides much flex-
ibility for modelling prior beliefs and indeterminacy,
together with interesting ways in which the corre-
sponding sets of posterior (predictive) distributions
and related inferences can vary. Most noticeably, this
model enables conflict between prior beliefs and data
to be shown through increased imprecision, that is dif-
ference between upper and lower probabilities for an
event of interest (Walter 2013). We illustrate the use
of this model, together with the survival signature,
for a small system in Example 1, without attention to
such prior-data conflict, further details on this will be
presented elsewhere (Walter, Aslett, & Coolen 2016).

Example 1

As a small example, consider the system with three
types of components presented in Figure 1. The sur-
vival signature of this system is given in Table 1,
where all cases with /3 = 0 have been omitted as the
system cannot function if the component of Type 3
does not function, hence ®(ly,l5,0) = 0 for all ({1, 5).

Figure 1: System with 3 types of components

Zl ZZ (D(llal%l) ll l2 (I)(llyl%l)
0O 0 O 0 1 0

1 0 O 1 1 0

2 0 173 2 1 273

3 0 1 3 1 1

4 0 1 4 1 1

Table 1: Survival signature for the system in Figure 1 for cases
with [3 = 1.

For component types 1 and 2, we consider a near-
noninformative set of prior survival functions. For
components of type 3, we consider an informative set
of prior survival functions as given in Table 2. This
set could result from eliciting prior survival prob-
abilities at times ¢t = 0,1,2,3,4,5 only, and using
those values to deduce such prior probabilities for all
other values of ¢ without further assumptions. These
prior assumptions, together with sets of posterior sur-
vival functions, are illustrated in Figure 3 (presented
at the end of the paper); test data for components
of type 1 and 2 are taken as {2.2,2.4,2.6,2.8} and



t [ [0,1) [1,2) [2,3) [3,4) [4,5)
gg)t) 0.625 0375 0250 0.125 0.010
—” 0.999 0.875 0.500 0.375 0.250

Table 2. Lower and upper prior functioning probability bounds
for component type 3 in the system of Figure 1.

{3.2,3.4,3.6,3.8}, respectively. For components of
type 3 test data are taken as {0.5,1.5,2.5,3.5}, which
are well in line with expectations according to the
set of prior distributions. The posterior sets of sur-
vival functions for each component type and for the
whole system show considerably smaller imprecision
than the corresponding prior sets, which is mainly
due to the low prior strength intervals we chose for

this example, namely [ngot),ngg] [ngt), gt)] 1,2],

[ngt),ﬁgot)] [1,4], for all ¢. We see that posterior
lower and upper survival functions drop at those times
t when there is a failure time in the test data, or a drop
in the prior survival probability bounds. Note that the
lower bound for prior system survival function is zero
for all ¢ due to the prior lower bound of zero for
type 1 components, and for the system to function
at least two components of type 1 must function. A
further reason why the imprecision reduces substan-
tially in this example is that the data do not conflict
with the prior beliefs. With these sets of prior distri-
butions such prior-data conflict can only really occur
for components of type 3, as such conflict logically
requires at least reasonably strong prior beliefs to be
taken into account through the set of prior distribu-
tions. If test failure times for the components of type
3 were unexpectedly small or large, the imprecision
in the lower and upper posterior survival functions for
this component would increase, with a similar effect
on the corresponding overall lower and upper system
survival functions. A detailed analysis illustrating this
effect will be presented elsewhere (Walter, Aslett, &
Coolen 2016).

3  NONPARAMETRIC PREDICTIVE
INFERENCE

Nonparametric predictive inference (NPI) (Coolen
2011) is a frequentist statistical framework based on
relatively few assumptions and considering events of
interest which are explicitly in terms of one or more
future observations. NPI can be considered suitable if
there is hardly any knowledge about the random quan-
tity of interest, other than the data which we assume
consist of n observations, or if one does not want
to use such further information, e.g. to study effects
of additional assumptions underlying other statisti-
cal methods. NPI uses lower and upper probabilities,
also known as imprecise probabilities, to quantify
uncertainty (Augustin, Coolen, de Cooman, & Trof-
faes 2014) and has strong consistency properties from
frequentist statistics perspective (Augustin & Coolen
2004, Coolen 2011). NPI provides a solution to some

explicit goals formulated for objective (Bayesian) in-
ference, which cannot be obtained when using pre-
cise probabilities (Coolen 2006), and it never leads to
results that are in conflict with inferences based on
empirical probabilities. NPI for system survival func-
tions, using the survival signature, was recently pre-
sented (Coolen, Coolen-Maturi, & Al-nefaiee 2014)
and is briefly summarized here.

We now present NPI lower and upper survival func-
tions for the failure time 75 of a system consisting of
multiple types of components, using the system sig-
nature combined with NPI for Bernoulli data (Coolen
1998). This enables the NPI method to be applied to,
in principle, all systems. The failure times of com-
ponents of different types are assumed to be inde-
pendent. It must be emphasized that the NPI frame-
work does not assume an underlying population dis-
tribution in relation to random quantities, and there-
fore also not that these are conditionally independent
given some probability distribution. In fact, NPI ex-
plicitly takes the inter-dependence of multiple future
observations into account. This requires a somewhat
different approach for dealing with imprecise proba-
bilities to that presented for the imprecise Bayesian
approach in the previous section.

NPI will be used for learning about the components
of a specific type in the system, from data consisting
of failure times for components that are exchangeable
with these. We assume therefore that such data are
available, for example resulting from testing or previ-
ous use of such components. It is assumed that failure
times are available for all tested components. As in
the previous section, let ng, for k € {1,..., K}, de-
note the number of components of type k& for which
test failure data are available, and let sf denote the
number of these components which still function at
time .

The NPI lower survival function is derived as fol-
lows. Remember that C* denotes the number of com-
ponents of type k in the system which function at time
t, where it is assumed that failure ends the function-
ing of a component. Under the assumptions for the
NPI approach (Coolen 1998), we derive the following
lower bound for the survival function

P(Ts > t) >Z Zcp HDCk le)

=0  Ig=0
where
D(Cf =) = P(Cf <ly) —

P
N + My, —1+lk
nk—sf+mk—lk
nk—sf

In this expression, P denotes the NPI upper prob-
ability for Bernoulli data (Coolen 1998). For each

PCF<l—1)=



component type k, the function D ensures that max-
imum possible probability, corresponding to NPI for
Bernoulli data (Coolen 1998), is assigned to the event
CF =0,s0 D(CF =0) = P(CF =0). Then, D(CF =
1) is defined by putting the maximum possible re-
maining probability mass, from the total probability
mass available for the event Ct’€ < 1, to the event
CF = 1. This is achieved by D(CF = 1) = P(CF <
1) — P(CF = 0). This argument is continued, by as-
signing for increasing [, the maximum possible re-
maining probability mass D(CF = I;). As the survival
signature is increasing in [, for coherent systems, as
assumed in this paper, and the resulting D is a precise
probability distribution, the right-hand side of the in-
equality above is indeed a lower bound and it is the
maximum possible lower bound. As such, it is the NPI
lower probability for the event Ts > ¢, giving the NPI
lower survival function for the system failure time (for
t>0)

K

T5>t Z %Cb Hﬁck_

11=0 =0 k=1

The corresponding NPI upper survival function for
Ty is similarly derived, using the upper bound

P(Tg > t) <Z Zcb HDC’“_lk

11=0 lg=0
where

D(CF = Ir)
<nk + mk) -1 <S1]tC + lk)
k X
T S¢

nk—Sf—ka—lk—l
nk—sf

In this expression, P denotes the NPI lower probabil-
ity for Bernoulli data (Coolen 1998). This construc-
tion ensures that minimum possible weight is given to
small values of CF, resulting in the NPI upper survival
function for the system failure time

— P(C} <1) ~P(CF <l —1) =

mg K
P(Ts>t)= Z e[ oy =

11=0 =0 k=1

We illustrate this NPI method for system reliability
using the survival signature in Example 2 (Coolen,
Coolen-Maturi, & Al-nefaiee 2014).

Example 2.
Consider the system with K = 2 types of components
as presented in Figure 2. The survival signature for

Figure 2: System with 2 types of components

Lol (k) | L b O lk)
00 0 [2 0 0
o1 0 [2 1 0
02 0 |2 2 49
03 0 |2 3 6m
1 0 0 [3 0 1
11 0 |3 1 1
12 19 [3 2 1
1 3 39 |3 3 1

Table 3: Survival signature of the system in Figure 2

this system is presented in Table 3, it is easily verified
by checking all possible combinations of the specific
components of each type which function or not.

To illustrate NPI for the system survival time, sup-
pose that n; = 2 components exchangeable with those
of type 1 and ny = 2 components exchangeable with
those of type 2 were tested. First suppose that failure
times 7 < {1 < {3 < t} were observed, with ¢* the j-
th ordered failure time of a component of type k. The
resulting NPI lower and upper survival functions for
the system failure time 7’s are specified in Table 4, to-
gether with the results for the case with the test failure
times ordered as ¢ < 3 <t} < 2.

For the ordering t? < t1 < t2 < t1, in the first inter-
val in Table 4 we have not yet seen a failure in the test
data, so the NPI upper probability that the system will
function is equal to one, which is logical as we base
the inferences on the data with few additional assump-
tions. In the second interval, one failure of type 2 has
occurred but we do not have any evidence from the
data against the possibility that a component of type
1 will certainly function at times in this interval, so
the NPI upper survival function remains one. In the
fourth interval, both type 2 components have failed
but only one component of type 1 has failed. In this
interval, to consider the lower survival function the
system is effectively reduced to a series system con-
sisting of three components of type 1, with one ‘suc-
cess’ and one ‘failure’ as data, denoted by (2,1). As
such a series system only functions if all three compo-
nents function, the NPI lower survival functlion V;/ithilgl

this fourth interval is equal to Sy () = 3 X 7 X 3



= 0.100, which follows by sequential reasoning, us-
ing that, based on n observations consisting of s suc-
cesses and n — s failures, denoted as data (n, s), the
NPI lower probability for the next observation to be
a success is equal to s/(n + 1) (Coolen 1998). The
NPI lower probability for the first component to func-
tion, given test data (2,1), is equal to 1/3. Then the
second component is considered, conditional on the
first component functioning, which combines with the
test data to two out of three components observed (or
assumed) to be functioning, so combined data (3, 2),
hence this second component will also function with
NPI lower probability 2/4. Similarly, the NPI lower
probability for the third component to function, con-
ditional on functioning of the first two components in
the system, so with combined data (4, 3), is equal to
3/5. In the final interval, we are beyond the failure
times of all the tested components, so we no longer
have evidence in favour of the system to function, so
Sr,(t) =0, but the system might of course still func-

tion as reflected by St (t) = 0.148.

For the second case in Table 4, with data ordering
th <2 <t} <12, we have Sz (t) = 0.667 in the sec-
ond interval, where one failure of type 1 has occurred
in the test data. In the fourth interval, both tested com-
ponents of type 1 have failed, leading to Sy, (¢) = 0.
Both of these values are directly related to the re-
quired functioning of the left-most component in Fig-
ure 2.

<t <ti<th

t e £K7%3>t> PK752>t)
(0,%) 0.553 1
(t2,t]) 0.458 1
(t1,t3) 0.148 0.553
(t3,t1) 0.100 0.458
(t,00) 0 0.148

t<t?<td<t?

t e £K7%2>t> _P(Tb:>t)
(0,t1) 0.553 1
(t1,%) 0.230 0.667
(t3,t3) 0.148 0.553
(t3,13) 0 0.230
(t3,00) 0 0.148

Table 4: Lower and upper survival functions for the system in
Figure 2 and two data orderings

4 DISCUSSION

The survival signature is a powerful and quite ba-
sic concept. As such, further generalizations are con-
ceptually easy, for example one can straightforwardly
generalize the survival signature to multi-state sys-
tems such that it again summarizes the structure func-

tion in a manner that is sufficient for a range of uncer-
tainty quantifications for the system reliability. The
survival signature can also be used with a generaliza-
tion of the system structure function where the latter
is a probability instead of a binary function, or even
an imprecise probability. This enables uncertainty of
system functioning for given states of its components
to be taken into account, which may be convenient,
for example, to take uncertain demands or environ-
ments for the system into consideration. In this pa-
per, we only considered test data with observed fail-
ure times for all tested components. If test data also
contain right-censored observations, this can also be
dealt with, both in the imprecise Bayesian and NPI
approaches (Walter, Graham, & Coolen 2015, Coolen
& Yan 2004, Maturi 2010) (more information about
NPI is available from www.npi-statistics.com).
This generalization is further relevant as, instead of
assuming availability of test data, it allows us to take
process data for the actual components in a system
into account while this system is operating, hence en-
abling inference on the remaining time until system
failure.

Upscaling the survival signature to large real-
world systems and networks, consisting of thou-
sands of components, is a major challenge. How-
ever, even for such systems the fact that one only
needs to derive the survival signature once for a
system is an advantage, and also the monotonic-
ity of the survival signature for coherent systems is
very useful if one can only derive it partially. For
small to medium-sized systems and networks, the
survival signature is particularly easy to compute
using the ReliabilityTheory R package (Aslett
2016b), available from www.louisaslett.com. Us-
ing this package it is straightforward to express
your system in terms of an undirected graphical
structure, after which a single call to the function
computeSystemSurvivalSignature suffices. The
function will compute all of the cut sets of the sys-
tem and perform the combinatorial analysis, returning
a table which contains the survival signature just as in
Table 2 and 3. For example, computation of the sur-
vival signature for the system in Figure 1 is achieved
with 3 simple commands

b

s <- graph.formula(s-1-2-3-t
-1-4-5-¢
:4-6-3:5

S >
2 )
setCompTypes (s,
list("T1"=c(2,4,3,5),
"T2"=6,
"T3"=1))

computeSystemSurvivalSignature(s)

Full instructions and some worked examples are
available within the package. There are numerous
other functions in the package, enabling computation
of: the legacy system signature (Samaniego 2007); the



continuous-time Markov chain representation of re-
pairable systems; as well as numerous inference algo-
rithms for Bayesian inference on the system signature
using only system-level data (Aslett 2013).

The survival signature enables some interesting ap-
plications which would otherwise be intractably diffi-
cult. For example, often a system designer may con-
sider the design (structure) of their system to be a
trade secret and so be unwilling to release it to com-
ponent manufacturers, while at the same time compo-
nent manufacturers are frequently unwilling to release
anything more than summary figures for components,
e.g. mean-time-between-failures. These two oppos-
ing goals lead to a situation in which it would seem
unrealistic to achieve a full probabilistic reliability
assessment and to honour the privacy requirements
of all parties. However, recent work (Aslett 2016a)
makes use of the survival signature to allow crypto-
graphically secure evaluation of the system reliabil-
ity function, where the functional form resulting from
the survival signature decomposition in Equation (1)
is crucial to enabling encrypted computation using
so-called homomorphic encryption schemes (Aslett,
Esperanca, & Holmes 2015). The equivalent decom-
position in terms of the structure function leads to dif-
ficulties in encrypted computation, so that this appli-
cation may be intractable without use of the survival
signature.
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Figure 3: Prior and posterior sets of survival functions for the
system in Figure 1 and its three component types. The compo-
nent failure times, that form the test data, are denoted with tick
marks near the time axis.



