arXiv:1604.05180v1 [cs.CR] 18 Apr 2016

Cryptographically secure multiparty evaluation of
system reliability

Louis J. M. Aslett
Department of Statistics, University of Oxford

Abstract

The precise design of a system may be considered a trade secret which should
be protected, whilst at the same time component manufacturers are sometimes re-
luctant to release full test data (perhaps only providing mean time to failure data).
In this situation it seems impractical to both produce an accurate reliability as-
sessment and satisfy all parties’ privacy requirements. However, we present recent
developments in cryptography which, when combined with the recently developed
survival signature in reliability theory, allows almost total privacy to be maintained
in a cryptographically strong manner in precisely this setting. Thus, the system
designer does not have to reveal their trade secret design and the component man-
ufacturer can retain component test data in-house.

Keywords: homomorphic encryption; privacy preserving statistics; reliability the-
ory.

1 Introduction

A standard part of developing any critical system is a thorough assessment of the reliabil-
ity characteristics. This involves a careful assessment of the reliability of the components
which will comprise the system and then propagation of all the uncertainty in these
estimates through to an assessment of the reliability of the whole system.

A common impediment to the above best practice is commercial privacy concerns:
the system designer will typically consider the exact design of their system to be a trade
secret, while component manufacturers are frequently reluctant to make full test data on
their components available, often preferring to give summary statistics such as mean time
to failure or other similarly suboptimal measures of reliability. Achieving a full and frank
assessment of overall system reliability while respecting such privacy concerns appears to
present a significant challenge.

Sensitive data is often kept private by encrypting it. Traditional methods of encryp-
tion are primarily intended for transmission of sensitive information and do not allow any
meaningful computation using the encrypted data without first decrypting it and risk-
ing revealing everything. However, recent developments in the cryptography literature
(Gentry, [2009) have provided methods of encryption which allow computation on the
encrypted content and has been shown to hold substantial promise in achieving privacy
preserving statistical analyses (Graepel et al., [2012; |Aslett et al. 2015c).

Herein these techniques are used to solve the widespread privacy problem of relia-
bility evaluation in industrial settings where privacy of test data and system design are

commercial requirements. Section [2 provides a high-level introduction to homomorphic
encryption, avoiding any technicalities that are not directly relevant. Section [3| describes
the survival signature and shows its importance in this context as a reliability decompo-
sition which is amenable to encrypted computation. This leads to the privacy preserving
protocol described in Section [4] which enables evaluation of the full survival curve of a
system without disclosure of component test data or system design. There is a practical
example discussed in Section [5|to provide practitioners with a clear demonstration of the
practicality of the method. The paper concludes with a short discussion in Section [6]

2 Homomorphic encryption

In this section a high-level introduction to homomorphic encryption schemes is provided
avoiding any unnecessary technicalities. Later it will be shown that the form of the
survival signature is very special from the perspective of performing homomorphic com-
putations in reliability problems, providing the motivation for the privacy preserving
protocol presented in Section [4]

2.1 Standard cryptography

All encryption schemes are either so-called ‘public’ or ‘secret’ key in nature. The proto-
col to be presented in the sequel requires a public key scheme. A public key encryption
scheme has two algorithms Enc(-,-) and Dec(+, -), which perform encryption and decryp-
tion respectively, together with two keys: the public key, k,, can be distributed widely
and anyone may use it to encrypt a message; the secret key, kg, is required to decrypt
any message encrypted using k, and so kept private. The principal identity is:

Dec(ks,Enc(k,,m)) =m VYm

The data to be encrypted, m, is referred to as the message and after transformation by
Enc(+,-) is referred to as the ciphertext.

Encryption is a common technique for ensuring the privacy of data, but typically once
one wishes to perform an analysis it is necessary to first decrypt and risk exposing the
data. In [1978|Rivest et al. proposed that encryption schemes capable of theoretically
arbitrary computation on encrypted data may be possible, but it was not until 2009 that
Gentry (2009) provided the first such scheme. An explosion of advances in cryptography
have ensued, each enabling a limited amount of computation to be performed directly on
the encrypted content, rendering the correct result upon decryption.

2.2 Fully homomorphic schemes

Encryption schemes are said to be fully homomorphic if they also possesses two opera-
tions, @ and ®, that can be applied a theoretically arbitrary number of times and satisfy:

Dec(ks, Enc(k,, my) @ Enc(ky, ma)) = my + ma
Dec(ks, Enc(k,, m1) ® Enc(k,, ma)) = my X my
for all my, my. In other words, a homomorphic encryption scheme allows computation

directly on ciphertexts, which will correctly decrypt the result as if it had been applied
to the original messages.

However there are many constraints in practical implementation, reviewed in |Aslett
et al.| (2015b)). For the purposes of this work they may be synopsised as:

1. Typically m can only naturally represent binary (m € GF(2)) or limited integer
ranges (m € Z/n7Z).

2. Data size after encryption is substantially inflated, by orders of magnitude.
3. Computational costs for @, ® are orders of magnitude higher than standard +, x.
4. Comparisons (=, <, >) and division are not possible under current schemes.

5. Implementation of current schemes necessitate a hugely computationally expensive
‘bootstrap’ operation (not related to statistical bootstrapping) which must be ap-
plied frequently between ® operations to control the noise in the ciphertext. Indeed,
bootstrap operations are so expensive that it is typical to avoid them completely
by constraining the algorithm to a small number of successive multiplications.

In essence then, homomorphic schemes are capable of evaluating multivariate poly-
nomials of the ciphertexts. In other words, if f(m1,...,m,) is a multivariate polynomial
in my, ..., m, then a homomorphic scheme ensures

Dec(lcs, g(Enc(kp, my),...,Enc(k,, mn))) = f(my,...,my)

where g¢(-) is the function f(-) with + replaced by & and x replaced by ®. Hence, any
algorithm to be computed encrypted must be expressible as a polynomial function.

Accordingly, constraint 5 above implies that the degree of the polynomial to be eval-
uated is a crucial quantity: if the degree is kept small then bootstrap might be avoidable
and the algorithm will be fast. Herein this quantity is referred to as the multiplicative
depth of the algorithm. In particular, note that the total number of multiplications is
not the issue, rather the number of successive multiplications.

The final point to note is that all homomorphic encryption schemes involve fixing some
parameters before generating the public and secret keys. These parameters influence how
secure the scheme is and often have other side effects such as controlling the multiplicative
depth which is possible. Often there are theoretical analyses of homomorphic schemes to
enable specification of a desired security and multiplicative depth to then work backwards
to an appropriate parameter choice.

Despite such restrictions, fully homomorphic encryption is theoretically exciting be-
cause for binary messages + and X correspond to logical OR and XOR respectively. These
two logical operations are sufficient for construction of any logical circuit and therefore
sufficient for theoretically arbitrary computation.

Practical usage of homomorphic schemes

It is currently impractical to encrypt all data as binary and compute the corresponding
logical circuits because the computational burden is too great (see Aslett et al., 2015b)
for a fuller discussion). Herein, an integer encoding of real values is used of a nature
similar to (Aslett et al., 2015c).
Let y € R, then an encoding m € Z of y is required which can be encrypted. Let
ty - R — Z be the encoding function used to represent real valued data as a message
A

with m = p.(y) = |[10"y], where |-] denotes rounding to the nearest integer. Then

3

this transformation, parameterised by x, preserves x decimal places of the real value y
with representation in integer form. y can be approximately recovered by ! (u.(y)) =

107" e (y) = y
This encoding works well for addition and multiplication, since

11 (b (1) + 1 (y2)) = w1 + 4o
fian (1 (Y1) 1 (12)) = Y192 (1)

Note the precision adjustment, 2k, required in . However, care is clearly needed since
encodings with differing precision parameters cannot be summed without adjustment.

The above discussion makes clear that standard statistical methods often cannot be
applied unmodified on encrypted content. However, as will be shown below the form of
the survival signature is particularly well suited to encrypted reliability analysis.

For further details, the reader is directed to fuller reviews of homomorphic encryption
(Gentry}, 2010; Aslett et al., [2015b)).

3 Encrypted computability and survival signatures

The survival signature was introduced by |Coolen and Coolen-Maturi| (2012) as a general-
isation of the system signature (Samaniegol, [1985; Kochar et al.,[1999), enabling multiple
different types of component. This relaxed the restrictive assumption of i.i.d components
found in the system signature, whilst retaining the separation of component lifetime and
the effect of system structure on reliability. This separation of components and structure
is the first critical property of the survival signature which enables the privacy preserving
protocol to be implemented in the sequel.

The structure function (Birnbaum et al. [1961) of an M component system is the
function ¢ : {0, 1} — {0, 1} which maps the binary operational state of the M compo-
nents to the operational state of the whole system. Letting x = (z1,...,z5) € {0,1}¥
be the vector of component states, ¢(x) is then the non-decreasing structure function
representing the system state. In particular, note that for coherent systems ¢(x) is al-
ways a multivariate polynomial in x, so that given x encrypted the operational state of
the system can be computed without decrypting the individual component states.

Indeed, it is valid to replace the binary operational state vector x with probabilities
of correct function at some mission time of interest and the structure function will then
render the probability of correct system operation. However, note that in this instance,
if the probabilities are encoded as in §2.2] then evaluation becomes awkward due to
the varying precisions x. Much more problematically, the form of the polynomial to be
evaluated is itself an encoding of the system design, so that revealing the algorithm to
evaluate the reliability is equivalent to revealing the design, rendering it unusable for the
problem considered here.

Let the system in question have K > 1 different component types, with M com-
ponents of type k, so that Zle M, = M. It then follows (Coolen and Coolen-Maturi,
2012) that the probability the system works given that 1 = (Iy,...,lx) of each of the
M = (M, ..., Mk) components is working is:

b)) - [(Af)] 3 6 @)

where 5] is the set of all component states x with exactly 1= (l4,...,lx) components of

cach type working, Sy, ;. = {x: .M 2 =, Vk}. Equation (@) is called the survival
signature.
If CF €{0,1,..., My} is the random variable denoting the number of components of

type k which are still operational at time ¢ in a future system with survival signature ®(-),
then the survival signature allows decomposition of the survival function of the overall
system lifetime Ty as:

P(Ts > t) = Z Z zl,...,zK)P<ﬁ{Cf:lk}>

11=0 zK 0
M,y K
= Z Z (I, ..., 1K) H P (Cf =1y) if types are independent (3)
=0 Ix=0 k=1

Notably, (3]) is also a polynomial in ®(-) and the component probabilities. Moreover,
it is a homogeneous polynomial. Therefore, under the scaling of §2.2] every term of the
polynomial in has precision (K + 1)k, so that the terms can be summed without
any rescaling required. This makes the survival signature particularly well suited to
computation under a homomorphic encryption scheme. Further still, the polynomial
form of is identical for all systems containing K types of component so that it reveals
little about the design of the system as long as the values of ®(1) V1 are not revealed.

A recent detailed survey of the survival signature with a more expansive introduction
can be found in (Coolen et al., 2016).

4 The privacy preserving protocol

The exposition hereinbefore highlighted the crucial aspects of homomorphic encryption
and the survival signature which now enable a novel approach to preserving the privacy
of component manufacturers and system designers when evaluating the reliability of a
new system.

4.1 Privacy framework

The form of privacy protocol now presented falls under the so-called ‘honest but curious’
model of security without collusion. That is, it is assumed that all the parties partici-
pating in the protocol are honest in following the specification, honest in the data they
input and do not collude with one another (rather are in competition). However, it is
assumed that all parties are curious to determine the secret information belonging to the
other parties and will seek to learn it by any means possible outside the protocol.

An interesting open question is to extend this to the case of malicious parties, where
there are no guarantees that the protocol has been followed and so trust in the final
answer must be dynamically established.

4.2 Setup

Let the system designer who wishes to evaluate the reliability of their design be called
0. The design involves K different types of component, made by manufacturers called

X155y XK-

There are certain initial setup actions which must be performed:

1. 0 first creates public and secret keys (k,, ks) for a homomorphic encryption scheme
of their choice which supports integer encryption. The scheme parameters used to
generate the keys must support multiplicative depth of at least K.

0 selects a grid of time points at which they wish to evaluate the survival curve of

the system, t = {t1,...,tr}.

3. 0 next creates an encrypted lookup table, =, for the system design. Part will be
encrypted and part unencrypted:

(a)

(b)

Form a table, =), comprising of columns [4, . .., lx with rows enumerating all
possible combinations of values that can be taken (i.e. [[r_, (Mg 4 1) rows).

0 1
=0 —

[y Ik

ma mg

Form another table, Z(®), containing 7" identical columns, where all entries
)

on row ¢ are Q)(El) That is, each row contains the survival signature for
each corresponding input row in Z. Note this requires only knowledge of the

system design.

®(0,...,0) -+ P(0,...,0)
o(0,...,1) - ®(0,...,1)
—~(<I>) . . .
(b(lla)lK) (I)(llaalK)
(b(mla"'7mK) (I)<m1a"'7mK)

Although all columns are identical at the start of the protocol, each column will
differ as the protocol proceeds once manufacturers interact test data for the
T different time points. That is, each column will be the reliability evaluation
for a different level of function at each time {¢y,...,t7}.

§ then decides on an acceptable precision level, x, and mutates =(®,

=(=
@(:E)) — Enc (kp, Lk <<I> (:p)) > ,
so that the lookup columns Iy, ..., Ik in ¥ are unencrypted and the survival
signature values in Z(® are encrypted. Together these form an encrypted
representation of the system structure that reveals the number of components,
but keeps the design secret.

Enc kp,uN(CP(O,...,O)) Enc kp,uN(CD(O,...,O))

Enc k:p,u,i(@(O,...,l)) Enc kp,uﬁ(é(O,...,l))
== Enc(k:p,un(@'(ll, . ,lK))> Enc(k:p,,u,i(@'(h, . .,lK)))
Enc(kp,u,{(cl)(ﬁl,...,mf())) Enc(kp,uﬂ(q)(;nl,...,m;()))

4.3 Component inference

Since x1, ..., Xx want to keep the component test data secret, inference on component
reliability is performed by each manufacturer prior to any encryption. This corresponds
to each xy estimating PP (C’t’C = lk) for each t € {t1,...,t,}. Given that § cannot validate
the inference approach taken to estimate P (Cf = lk) from the test data, one might argue
a non-parametric method should be specified as part of the protocol. This is the approach
used in the example in the next section.

4.4 The protocol

The privacy preserving protocol then proceeds as follows:

1. ¢ sends k,, t and x to all x;. Each x; is also sent only the k-th column of =0,
Finally, =(®) is sent to x; to start the protocol.

2. Fork={1,...,K}:

(a) Fort={1,..., T}
e Update
ng) = ng) ® Enc (kp,,uﬁ (]P’(Cf = E%))) V1 (4)
(b) After fully updating Z(®), if k < K then x; sends Z®) to g1
3. T(};e) final participant xx computes the final result, the encrypted column sums of

[Ty (Mg +1)

2 P =Y vie{n...1} (5)

i=1
Xk then sends £ = (&,...,&r) to 9.

4. ¢ finally computes 10~ E+Vx Dec(k,, ;) ~ P(Ts > t;), rendering the survival curve
values computed on the required grid of times t.

Note that due to the system lifetime decomposition via the survival signature being a
homogeneous polynomial in the survival signature and component survival probabilities,
the adjustment required in the final step above is known a priori to be 10~ (K+1x,

— C1 Pl [
— C2 P2
M |
— C3 P3

H FP— —
— 4 P4J

Figure 1: Simple automotive braking system. The master brake cylinder (M)
engages all the four wheel brake cylinders (C1 — C4). These in turn each
trigger a braking pad assembly (P1 — P4). The hand brake (H) goes directly
to the rear brake pad assemblies P3 and P4; the vehicle brakes when at least
one of the brake pad assemblies is engaged.

5 Experimental results

In order to provide an insight into the method for practitioners, a fully encrypted survival
analysis was conducted on the simple automotive braking system example from (Walter
et all [2016), depicted in Figure . This system comprises four different component
types which are taken to be manufactured by different parties, all of whom wish their
test data to remain secret. It is assumed that the system design is also secret and
belongs to a different party. The full code required to run this example is provided in
the supplementary material, programmed in the easy to use R language (R Core Team,
2015).

5.1 Component inference

Manufacturer of component k is taken to have n; > 0 observations of lifetime test data on
the component type they manufacture, tF = {t}, ... ,tflk}, ke {C ,H,M,P}. It is a well
studied problem to infer the component lifetime distributions, either non-parametrically
or by inferring parameter uncertainty in a family of models such as the Weibull. |Aslett
et al.| (2015a)) considered both situations with the survival signature, but in this example
only the non-parametric approach is used: both methods would work with the privacy
preserving protocol described hereinbefore, but in the present context it would seem
unlikely manufacturers would be willing to disclose the parametric family they are fitting
and the system designer may therefore wish to guard against inappropriate choices which
(s)he cannot validate — if all manufacturers use the same non-parametric method then
the context of all results is well understood.

5.2 Example setup

To make the example usage of the technique as realistic as possible, 5 compute servers
were launched in 5 different continents around the world using the Amazon Web Services
EC2 cloud platform, to mimic a globally distributed supply chain. This also provides an
empirical example of the cost of the method if a designer/manufacturer does not have

a sufficiently powerful machine to run the algorithm. The servers for each party were
launched as follows:

Role Physical Server Location Server Type
System designer Dublin, Ireland m4.10xlarge
Manufacturer C Northern California, USA m4.10xlarge
Manufacturer H Sao Paulo, Brazil c3.8xlarge
Manufacturer M Sydney, Australia r3.4xlarge
Manufacturer P Tokyo, Japan i2.8xlarge

The servers above have the following technical specification:

Server Type Intel Xeon CPU Memory (GB) Hourly Cost (USS$)
m4.10xlarge 40 cores, 2.4 GHz Haswell 160 2.61 - 2.79

c3.8xlarge 32 cores, Ivy Bridge 60 2.60

r3.4xlarge 16 cores, Ivy Bridge 244 1.60

i2.8xlarge 32 cores, Ivy Bridge 244 8.00

‘Cores’ refers to hyper-threaded cores and hourly costs quoted are on-demand in the
region launched. Much cheaper ‘spot’ prices are commonly available. See the Amazon
Web Services website for further details.

The |[Fan and Vercauteren (2012)) homomorphic encryption scheme was used via the
HomomorphicEncryption R package (Aslett, 2014)), with survival signature computed by
the system designer using the ReliabilityTheory R package (Aslett] 2012).

To ensure reasonable transmission times between continents the cipher texts must be
compressed. Typically, the size of Z(®) in this example reached nearly 12GB and although
the standard Unix gzip tool provides good compression, it can take up to 20 minutes to
compress such a large file. Therefore pigz (Adler, 2015) was used for high speed parallel
compression which was more than an order of magnitude faster on the multi-core Amazon
EC2 servers.

5.3 The encrypted analysis run

The system designer set precision Kk = 5; set 100 evenly spaced times for evaluation
between 0 and 5, t = {% c i = 0,1,...,99}; and generated public/secret keypairs
providing at least 128-bit security (that is, a brute force attacker would have to perform
order 2! operations to decrypt).

The computational characteristics of this actual analysis run were as follows:

Role Action Timing / Size
Generation of (k,, ks) 0.3 secs
System designer Enc'r ypE(()qr)l) of :(.(b) L i 411 secs
Dublin. Ireland Saving ='*) to disk 2 min 41.3 secs
’ Compressing =(® on disk 48.0 secs

Size of Z(®) on disk 5.5GB
Transfer Z® to Manufacturer C 11 min 37.5 secs

.......

0.75 - s
E gl Y Method
% "‘ Encrypted
@ 0-50 "—. ---- Standard
£ |

0.25 -

0 1 2 3 4 5
Time

Figure 2: Comparison of the system survival curves as estimated using the
software function in Aslett et al.| (2015a)) and as decrypted after the encrypted
estimation on the global network of servers.

Role Action Timing / Size
Manufacturer C 3e((:ior;lplf(is) & 10 =Z®) from disk lg m%n ?;g secs
. : pdate Z'*) eq min .3 secs

Northern California, USA Saving & compressing =(® to disk 2 min 9.8 secs
Transfer =® to Manufacturer H 11 min 24.4 secs

Manufacturer I Decompress & load Z(®) from disk 10 m%n 13.2 secs
S50 Paulo. Bragil Update Z(®), eq 7 min 23.1 secs
’ Saving & compressing Z(®) to disk 4 min 45.2 secs

Transfer 2 to Manufacturer H 20 min 16.5 secs

Manufacturer M Decompress & load Z®) from disk 9 min 41.0 secs
Sydney. Australia Update =), eq 11 min 28.2 secs
’ Saving & compressing Z(® to disk 2 min 54.2 secs
Transfer Z®) to Manufacturer H 6 min 40.7 secs

Decompress & load Z® from disk 9 min 57.1 secs

Mamufacturer P Update Z(®)| eq 7 min 13.5 secs
Tokyo, Japan Con_qpute &, eq . . 6.1 secs
’ Saving & compressing £ to disk 2.5 secs

Size of & on disk 58.4MB

Transfer & to System Designer 39.5 secs
System designer Decompress & load ¢ from disk 5.9 secs
Dublin, Ireland Decryption of £ 8.6 secs
Total: 2 hr 18 min 38.4 secs

Clearly the most variable timing element of this analysis stems from the data transfer
time between manufacturers, which ranged from under 7 minutes to over 20 minutes. A
total runtime of under 3 hours means that this protocol is entirely feasible to run even

10

if manufacturer or designer need to outsource the compute power to accomplish it. In
particular, none of the machines needs to be on for more than 1 hour and at the time of
writing the most expensive of the instances used costs US$ 7.50 per hour, though using
so-called spot-instances there is usually a suitable instance type available for less than
US$ 1 per hour.

Upon decryption, the survival curve which is yielded can be seen in Figure [2, Com-
pared to the baseline result which is computed unencrypted, there is a very small dis-
crepancy resulting from the rounding associated with the integer encoding u, : R — Z.
An empirical estimate of the total variation distance between the true and encrypted
survival probability measures is 0.029, representing a small discrepancy.

6 Conclusions

This work has developed a privacy preserving protocol for conducting a full system relia-
bility analysis. The use of homomorphic encryption methods provides cryptographically
strong guarantees on the security of the raw system design and component test data.

The method has been demonstrated to be practical despite the tremendous compu-
tational burden which traditionally accompanies encrypted statistical analysis and is a
method which can be implemented by businesses even where they lack in-house com-
pute servers by availing of inexpensive cloud computing options (where privacy is still
preserved since all material is encrypted).

Supplementary materials

There are extensive supplementary materials provided in a compressed zip file. The
contents are as follows:

designer.R: An extensively commented script file containing the code which a system
designer would run in order derive the survival signature and homomorphically
encrypt Z(® as described in Section , using the automotive braking system of
Section p] (R script file)

manufacturer_{C,H,M,P}.R: Four script files, one per manufacturer, containing the
code in order to execute the steps of the protocol described in [4] for the braking
system example of Section [(R script file)

utility.R: defines utility functions used in the above scripts to compute g, (+), p:'(+)
and to compute the non-parametric component inference estimate. (R script file)

AmazonEC2-xi_m.RData: the decrypted results of the full experiment run in Section [5
(R image file)

compare_to_truth.R: a script which plots the experimental results which were run en-
crypted across a global network to the result of performing the experiment unen-
crypted in one session. (R script file)

11

Acknowledgements

The author is supported by the i-like programme grant (EPSRC grant reference number
EP/K014463/1 http://www.i-like.org.uk).

References

M. Adler. pigz: A parallel implementation of gzip for modern multi-processor, multi-core
machines. Jet Propulsion Laboratory, 2015. URL http://www.zlib.net/pigz/.

L. J. M. Aslett. ReliabilityTheory: Tools for structural reliability analysis, 2012. URL
http://cran.r-project.org/package=ReliabilityTheory. R package.

L. J. M. Aslett. HomomorphicEncryption: Fully Homomorphic Encryption, 2014. URL
http://www.louisaslett.com/HomomorphicEncryption/. R package.

L. J. M. Aslett, F. P. A. Coolen, and S. P. Wilson. Bayesian inference for reliability of
systems and networks using the survival signature. Risk Analysis, 35(9):1640-1651,
2015a. doi: 10.1111/risa.12228. URL http://doi.org/10.1111/risa.12228,

L. J. M. Aslett, P. M. Esperanca, and C. C. Holmes. A review of homomorphic encryp-
tion and software tools for encrypted statistical machine learning. Technical report,
University of Oxford, 2015b. URL http://arxiv.org/abs/1508.06574.

L. J. M. Aslett, P. M. Esperanca, and C. C. Holmes. Encrypted statistical machine
learning: new privacy preserving methods. arXiv, 2015c. URL http://arxiv.org/
abs/1508.06845.

Z. W. Birnbaum, J. D. Esary, and S. C. Saunders. Multi-component systems and struc-
tures and their reliability. Technometrics, 3(1):55-77, 1961.

F. P. A. Coolen and T. Coolen-Maturi. Generalizing the signature to systems with mul-
tiple types of components. In W. Zamojski, J. Mazurkiewicz, J. Sugier, T. Walkowiak,
and J. Kacprzyk, editors, Complex Systems and Dependability, volume 170 of Advances
in Intelligent and Soft Computing, pages 115-130. Springer Berlin Heidelberg, 2012.
doi: 10/bdxb.

F. P. A. Coolen, T. Coolen-Maturi, L. J. M. Aslett, and G. Walter. Imprecise system
reliability using the survival signature. In ICAMFER 2016 Proceedings, 2016.

J. Fan and F. Vercauteren. Somewhat practical fully homomorphic encryption. TACR
Cryptology ePrint Archive, 2012.

C. Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University,
2009. URL http://crypto.stanford.edu/craig/.

C. Gentry. Computing arbitrary functions of encrypted data. Communications of the
ACM, 53(3):97-105, 2010. doi: 10.1145/1666420.1666444.

T. Graepel, K. Lauter, and M. Naehrig. Ml confidential: Machine learning on encrypted
data. In Proceedings of the 15th International Conference on Information Security and
Cryptology, volume 7839 of Lecture Notes in Computer Science, pages 1-21. Springer-
Verlag, 2012. doi: 10/bdxc.

12

http://www.i-like.org.uk
http://www.zlib.net/pigz/
http://cran.r-project.org/package=ReliabilityTheory
http://www.louisaslett.com/HomomorphicEncryption/
http://doi.org/10.1111/risa.12228
http://arxiv.org/abs/1508.06574
http://arxiv.org/abs/1508.06845
http://arxiv.org/abs/1508.06845
http://crypto.stanford.edu/craig/

S. Kochar, H. Mukerjee, and F. J. Samaniego. The “signature” of a coherent system
and its application to comparisons among systems. Naval Research Logistics, 46(5):
507-523, 1999. doi: 10/cqnmbhj.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2015. URL https://www.R-project.
org/.

R. L. Rivest, L. Adleman, and M. L. Dertouzos. On data banks and privacy homomor-
phisms. Foundations of Secure Computation, 4(11):169-180, 1978.

F. J. Samaniego. On closure of the IFR class under formation of coherent systems. IEEE
Transactions on Reliability, 34(1):69-72, 1985. doi: 10.1109/TR.1985.5221935.

G. Walter, L. J. M. Aslett, and F. P. A. Coolen. Bayesian nonparametric system reliability
using sets of priors. arXiv, 2016. URL http://arxiv.org/abs/1602.01650.

13

https://www.R-project.org/
https://www.R-project.org/
http://arxiv.org/abs/1602.01650

	1 Introduction
	2 Homomorphic encryption
	2.1 Standard cryptography
	2.2 Fully homomorphic schemes

	3 Encrypted computability and survival signatures
	4 The privacy preserving protocol
	4.1 Privacy framework
	4.2 Setup
	4.3 Component inference
	4.4 The protocol

	5 Experimental results
	5.1 Component inference
	5.2 Example setup
	5.3 The encrypted analysis run

	6 Conclusions

