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Abstract

Commonly reliability data consist of lifetimes (or censoring information) on all com-

ponents and systems under examination. However, masked system lifetime data rep-

resents an important class of problems where the information available for statistical

analysis is more limited: one only has failure times for the system as a whole, but no

data on the component lifetimes directly, or even which components had failed. For

example, such data can arise when system autopsy is impractical or cost prohibitive.

The problem of statistical inference with such masked system lifetime data is con-

sidered in the situation where component repair is and is not possible.

Continuous-time Markov chains are widely-used models for repairable systems with

redundancy, with an absorbing state representing failure. The failure time is then the

first passage time to the absorbing state, which is modelled by a Phase-type distribu-

tion.

Bayesian inference via MCMC for Phase-type distributions when data consist only

of absorption times is considered. Extensions to the existing methodology of Bladt

et al. (2003) are presented which accommodate censored data, enable a structure to be

imposed on the underlying continuous-time Markov process and expand computational

tractability to a wider class of situations. This part of the research is also broadly

applicable outside the reliability interpretation presented in this thesis.

For non-repairable systems, a novel signature based data augmentation scheme is

presented which enables inference for a wide class of component lifetime models for an

exchangeable population of systems. It is shown that the approach can be extended to

enable topological inference of the underlying system design.

Finally, two R packages (‘PhaseType’ and ‘ReliabilityTheory’) are provided which en-

able reliability practitioners to make use of the theoretical contributions of this research

easily.
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Chapter 1

Introduction

The motivating preoccupation of this thesis is statistical inference for reliability models

of both repairable and non-repairable coherent systems in the presence of masked

system lifetime data.

The availability of a system depends on the operational state of its components.

Thus, a simple inferential analysis may traditionally assume that the operational state

and failure times (or censoring information) for all constituent components of the sys-

tem are known. In principle, one may then proceed with a Bayesian analysis in a

straightforward manner to learn about the parameters of the component lifetime dis-

tribution used in the model.

However, the scenario considered herein assumes that only the overall system failure

time is known, and not those of the constituent components of the system. Indeed, the

particular operational state of the components comprising the system is also considered

unknown at the system failure time. It is data of this kind which are commonly referred

to as masked system lifetime data.

Such data can arise in a variety of applications. For example, repair of a complex

system may involve identifying which major subsystem has failed and replacing it en-

tirely, so that the subsystem lifetime is known, but not the lifetimes of the components

within it or even which components had failed, unless an autopsy is performed. Such

an autopsy may be impractical or cost prohibitive relative to the repair, such as in

consumer computer repair. Another example would be where many systems are sent

into the field, but upon failure the system may be discarded, and only failure time of

the system as a whole reported.
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Two cases are considered: when components cannot be repaired, and also when

non-disruptive component repair prior to the first system failure is possible, with repair

times having a random element.

The repairable case is handled by using a continuous-time Markov chain model

of the process of failure and repair through which a system passes before ultimately

failing. With an absorbing state representing failure, the first passage time to that

state is then Phase-type distributed. Consequently, focus is on Bayesian inference for

Phase-type distributions with generator matrices designed to represent the failure and

repair process.

The non-repairable case is tackled by development of a system signature based data

augmentation scheme, leading to a highly flexible approach. As a result, the topology

of the system may be jointly incorporated into the inference so that learning may take

place not only on the parameters of the component lifetime distribution, but also on

the system design.

There is potentially broad scope for real world application of this work. Indeed,

the advances of Chapter 4 are applicable anywhere that the problem under investiga-

tion may be modelled by a Phase-type distribution. Restricted to reliability theory,

the focus in the sequel, applications still abound in power, telecommunications and

computer systems, among many other engineered systems.

For example, an offshore wind farm may only be subject to very periodic repairs, so

that it may be modelled as a non-repairable system, and moreover catastrophic failure

can lead to sufficient damage to render autopsy impossible, leading to fully masked

lifetime data.

Another example, this time repairable, may be of a business reliant on a telecom-

munications network for connecting mission critical systems. If not the operator of the

network, then the exact process of failure and repair may be unknown but failure times

will be observed, again leading to fully masked lifetime data.

Finally, learning of the system design is the most ‘blue skies’ aspect of the re-

search, with fewer immediately obvious applications. One application which has been

suggested is an adversarial military or game theoretic setting where the design of the

opposing force’s system is unknown but failure data is available to then learn its design.
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1.1 Overview of chapters

This thesis should provide a perspicuous account of the research assuming only knowl-

edge of the compulsory elements of an undergraduate degree in mathematics, such as

the moderatorship programme taught at Trinity College Dublin.

An overview of the remainder of the thesis is as follows:

Chapter 2: Reliability Theory and Phase-type Distributions

The fundamental concepts involved in structural reliability theory are introduced in this

chapter, from the perspective of both the structure function and the system signature.

The second part of the chapter introduces stochastic processes, specifically continuous-

time Markov chains, and Phase-type distributions with an emphasis on their potential

application in reliability theory.

Chapter 3: Statistical Methodology

The Bayesian inferential method underlies the work in this thesis and so a brief in-

troduction to the Bayesian perspective on inference is provided for those outside the

statistics research community, who may be more familiar with frequentist ideas. The

chapter continues with an introduction to the foundational ideas of Markov chain Monte

Carlo theory, atop which all of the research in this thesis sits. The chapter concludes

by reviewing the two main works in the literature for general inference on Phase-type

models.

Chapter 4: MCMC for Phase-type Models

This chapter marks the commencement of the main body of contributions.

There is a detailed study of the MCMC algorithm of Bladt et al. (2003), with

special emphasis given to understanding its potential application to masked system

lifetime inference when components are repairable. In light of certain problems which

become apparent, the chapter continues by presenting extensions to the methodology

which eliminate or ameliorate them. This includes reformulation of the model, devel-

opment of a new approach to sampling the latent continuous-time Markov process and

accommodation of censored data. The chapter concludes with an examination of the
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extended methodology and a realistic size reliability example.

The contributions of Chapter 4 are generally applicable to any Phase-type model,

but to maintain a cogent thread through the research the emphasis is always on relia-

bility problems.

Chapter 5: Networks, Simply Connected Systems & Their Signature

This is a short chapter which lays some prosaic but essential groundwork for the re-

mainder of the research. It clarifies terminology used in different ways in various parts

of the literature, making clear a separate subclass of coherent system which is useful for

some applications. It also catalogues graph representations and system signatures for

these systems and additionally applies the system signature to unreliable links rather

than unreliable components in such systems.

Chapter 6: Parametric and Topological Inference with Masked Lifetime

Data

Chapter 6 considers the non-repairable setting. A signature based data augmenta-

tion scheme is developed which is applicable for a broad range of component lifetime

distributions, enabling parametric inference on the lifetime distribution parameters.

This is immediately extended to enable inference on the topology of the system which

generated the masked lifetime data.

The chapter includes extensive examples of the methodology, both linking it with,

and extending, the work of Chapter 4.

Chapter 7: Statistical Computing

The final chapter presents a succinct introduction to the two R packages, ‘PhaseType’

and ‘ReliabilityTheory’, which are provided to enable reliability practitioners to imme-

diately and easily start using the theoretical contributions presented throughout.

1.2 Research contributions

Following is an overview of the contributions made by this research:
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1. Detailed study of the inferential and computational characteristics of the method-

ology of Bladt et al. (2003), including the statement and proof of Theorem 4.1

and Corollary 4.2.

2. The model reformulation of §4.2.1, enabling structure to be imposed on the latent

continuous-time Markov chain generator of the Phase-type model.

3. Development of the Exact Conditional Sampling (ECS) technique for simulation

of an absorbing continuous-time Markov process conditional on an exact absorp-

tion time. This is Algorithm 4.1, including statement and proof of associated

Lemmas 4.3, 4.4 and 4.5.

4. Extension of ECS to right censored observations in Algorithm 4.2, including

statement and proof of associated Lemma 4.6 and Corollary 4.7.

5. The development of Algorithm 5.1 and proof of Theorem 5.1, for enumeration of

all simply connected coherent systems and their signature. Also the development

of Algorithm 5.2 to likewise enumerate all coherent networks and their signature.

These lead to the useful results of Tables 5.1, 5.2, 5.3, A.2, 5.4 and A.1.

6. The MCMC approach to parametric and topological inference in Algorithm 6.2,

including the signature based data augmentation of Algorithm 6.1 and statement

and proof of associated Lemma 6.1.

7. The derivation of the prerequisites for implementation of Algorithm 6.2 for the

model formulations in §6.3.1, §6.3.2, §6.3.3 and §6.3.4. §6.3.4 also includes ex-

tension of Chapter 4 to the weaker assumption of exchangeable systems.

8. Development and public release of the R packages ‘PhaseType’ (Aslett, 2011)

and ‘ReliabilityTheory’ (Aslett, 2012) which provide easy interfaces to use the

contributions of this research in real-world applications.

5



Chapter 2

Reliability Theory and Phase-type

Distributions

Although some of the contributions of this thesis are generally applicable, there was

a motivating application in mind which led to their development. That application

relates to questions of inference surrounding physical systems which are subject to

repairable (or non-repairable) component failures, but where there may be redundancies

built in so that unless multiple failures occur before repair is complete there is no

interruption in service.

This chapter introduces the field of reliability theory as studied by mathemati-

cians and probabilists (as distinct from engineers who favour fault-tree style analysis),

with an emphasis on structural reliability of systems. It then introduces the study

of stochastic processes — in particular Continuous-time Markov Chains (CTMCs) —

and relates it to the study of reliability. The chapter concludes with an exposition

of Phase-type distributions which is proposed as a model in problems of inference for

repairable redundant systems.

2.1 An introduction to reliability theory

The origins of modern reliability theory can be traced to World War II and the advent

of complex military systems whose failure characteristics had to be well understood.

A fascinating historical exposition of some of this pioneering work following its declas-

sification is in Mangel and Samaniego (1984).
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Reliability theory as discussed here focuses on quantifying the uncertainty surround-

ing the correct operation of components and systems of components using the language

of probability theory, for example, by seeking to model time to failure. Although the

focus in this thesis is on engineered physical systems there is overlap with biological

reliability, conventionally termed ‘survival analysis’. The main distinction in research

direction stems from interest in structural reliability of engineered systems: that is,

reliability of systems composed from many components each with certain failure char-

acteristics. In contrast, survival analysis traditionally treats individuals as discrete

units.

Broadly speaking, there are two avenues of study pursued in the literature. The first

route is a probabilistic analysis of component lifetimes, system lifetimes, and indeed

matters of ‘optimal’ design of those systems — here the model and parameters are

usually treated as known. The second route, given data on the failure of components

or systems, is a statistical analysis to infer the parameters of the chosen model and

check the adequacy of that model to describe the failure data.

This thesis is concerned primarily with the latter, although there is naturally much

interplay between the areas. §3.1 provides background on Bayesian inference which is

the methodology used in this thesis. A genuinely classic text concerning probabilistic

aspects of reliability theory is Barlow and Proschan (1981). As noted in that work,

although on the surface reliability theory appears to be merely another generic appli-

cation of probability theory, there are, in fact, extensive subject-matter considerations

which have led to its fruitful development as a sub-discipline in its own right.

Finally, the words ‘component’ and ‘system’ are employed in the most general sense

possible. An application area of particular interest to the author is telecommunication

networks: any likewise interested reader may profitably think of ‘nodes’ and ‘networks’

respectively where appropriate.

2.1.1 Component reliability modelling

The term ‘component’ refers to any unit which is atomic from the perspective of the

analysis, meaning that no constituent parts of the unit are modelled directly, only the

unit as a whole. Note that a component in an analysis may in physical reality be a

complex system.
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The operational state of a component is considered to be binary: correctly func-

tioning, or failed. Let Y denote the binary random variable for the state of a general

component, with Y = 1 representing correct operation and Y = 0 representing failed.

Such notation is conventional in the reliability literature and an elementary model is

Y ∼ Bernoulli(p).

However, it is vital to bear in mind that the value Y attains will depend on the time

at which the component is observed. Unless otherwise stated, in this section it should

be taken as implicit that all random variables under consideration are observed at a

common fixed time of no particular note. In instances where the time of observation

is pertinent, or not the same for all the random variables under consideration, an

extended notation is useful:

Y {t} =

 0 if Y is not functioning at time t

1 if Y is operational at time t
(2.1)

This makes explicit the dependence on time when necessary. By natural extension,

Y [0,t) denotes the state of the component on the half closed interval from time 0 to t.

Indeed, in full generality Y Ω represents the state of the component for all t ∈ Ω. Thus

the aforementioned elementary model would be a Bernoulli distribution with parameter

p expressing the probability that Y {t} = 1 for some fixed value of t. Hereinafter the

relevant notation (Y, Y {t}, Y [0,t), etc.) will be used as appropriate in the context.

If repair of a component is not possible then there exists some t such that Y [0,t) = 1

and Y [t,∞) = 0, where t is termed the failure time of the component. This failure time

is itself a random variable, T , and is commonly modelled by some lifetime probability

distribution FT (t) = P(T < t) with non-negative support {t : FT (t) > 0} ⊂ [0,∞).

Discretely distributed random failure times are a possibility, but not considered here.

Of particular interest in a reliability context is the survival function, defined as:

F̄T (t) := P(T > t) = 1− FT (t)

Commonly used lifetime probability distributions include the Exponential, Gamma,

Weibull, Gumbel, Extreme Value, truncated Normal and log-Normal distributions,

among others. There is also a rich literature of non-parametric reliability theory, from

the classical Kaplan-Meier estimator (Kaplan and Meier, 1958) to more recent and

sophisticated Nonparametric Predictive Inference (NPI) methods (Coolen et al., 2002)
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which allow vagueness in modelling by using upper and lower probabilities with few

assumptions, though these approaches are not considered further here.

Arguably the foremost probability concept connected to reliability theory (but of

only minor interest in general probability theory) is the hazard rate:

Definition 2.1 (Hazard rate) For a lifetime distribution FT (t), the hazard rate is

given by

h(t) = lim
δ→0+

P(t < T < t+ δ |T > t)

δ
=

1

F̄T (t)

∂FT (t)

∂t
=
fT (t)

F̄T (t)

The hazard rate is the instantaneous risk of failure and encapsulates the changing

failure characteristics with time. Many physical components will have non-decreasing

hazard rate: their exposure to risk of failure at any instant is constant or increasing

over time due to wear. An interesting counterpoint to this is software reliability, where

hazard rates are commonly non-increasing: as programming bugs are discovered and

fixed the reliability tends to improve (Singpurwalla and Wilson, 1999). Probability

distributions used in reliability theory which satisfy the former are termed IFR (In-

creasing Failure Rate) and the latter DFR (Decreasing Failure Rate) and such a simple

restriction leads to often quite sharp bounds on survival probabilities.

Therefore the hazard rate is an important property of any lifetime probability dis-

tribution, encapsulating an intuitive notion of time-varying risk which one would seek

to be concordant with reality when choosing a model. In particular, solving a simple

differential equation shows that there is an injective relationship between a hazard rate

function and a survival function:

F̄T (t) = exp

{
−
∫ t

0

h(u) du

}
meaning the reliability model could even be chosen by considering the hazard rate

directly and then deriving the probability distribution. There are some caveats to this

approach aside from the obvious necessity of assuming absolute continuity of FT (see

Singpurwalla and Wilson, 1995)

The Exponential distribution (rate λ) deserves individual mention as a special case

since it has constant hazard, h(t) = λ ∀ t. This is as might be expected from the

characterising ‘memoryless’ property of the Exponential distribution and so models

components which are not subject to wear or online improvement, such as electronic
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components. It is surprisingly pervasive in reliability: for example, even in complex

series systems with independent but not identical components, the inter-failure times

converge to an Exponential distribution irrespective of whether the individual failure

distributions are Exponential (Barlow and Proschan, 1965).

Since engineers in particular find the hazard an appealing concept, inference may

focus simply on the hazard rate directly rather than on the parameters of the model.

Indeed, the seminal work of Cox (1972) which is widely adopted in survival analysis

developed proportional hazard regression models, obviating any distributional assump-

tions entirely to infer the multiplicative effect of explanatory variables on an unknown

baseline hazard.

2.1.2 Inferential considerations

As already alluded to, the interest in this work is primarily on problems of infer-

ence. With a standard probability model defined for the failure time of individual

components, inference on the model parameters can usually proceed in a relatively

straight-forward manner. However, a prominent subject-matter concern is the data

which are typical in reliability settings.

One aspect requiring care when applying reliability theory to real world data is the

measurement of ‘time’. Reliability theory models depend on ‘time’ in the abstract sense

of a measure of ageing, but this need not be wall-clock time. For example, equipment

which is not always on may better be measured by the time in operation, and an

example lending itself to an alternative measure of age would be vehicles, which may

more properly be aged by distance travelled.

Another facet requiring care in application is the definition of failure. Traditionally

the reliability literature considers there to be an instant in time before which the unit

was operational and after which it was failed. There may be systems which can operate

while severely degraded but in an out-of-specification manner, which then requires care

in formally elucidating a consistent definition of failure.

A concern which has an impact at the methodological level — and is therefore

of more direct interest in this thesis, especially for a contribution in Chapter 4 — is

that of censoring of observations. Censored data can appear in different guises and

are ubiquitous in most real world reliability datasets: simply ignoring it can lead to
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seriously erroneous and biased conclusions. A compelling example can be found in

the post-mortem of analysis conducted immediately preceding the launch of NASA’s

Challenger shuttle: test flights where no failure occurred were omitted (count censoring)

leading to catastrophically poor decisions (Dalal et al., 1989). Another common guise

is in lifetime data when there may be right censoring of units in a limited duration

experiment: it will not be uncommon for some units to survive beyond the end of the

trial time, meaning it is only known that the unit would have failed at some time beyond

the end of observation. Accounting for this usually takes place in the likelihood (see

§3.1.1), by appropriate use of the survival function in place of the density (the details

of exactly how depending on model assumptions, see §3.1.5). Similar procedures enable

incorporation of left and interval censored data. All censoring in this thesis is considered

to be at random (and thus uninformative censoring). Kalbfleisch and Prentice (2002)

has further discussion of censoring mechanisms and their impact on the likelihood.

2.1.3 Structural reliability

With an appropriate model for components, attention can turn to the study of systems

of components, or so-called structural reliability. The pioneering work of Birnbaum

et al. (1961) set the foundation for the study of structural reliability via the ‘structure

function’, which is briefly covered here. It was later in Samaniego (1985) and Kochar

et al. (1999) that the ‘signature’ was developed as another avenue for structural reli-

ability research and is the foundation on which the contributions of Chapters 5 and 6

are built.

2.1.3.1 System structure functions

If a system of components Y1, . . . , Yn is formed, denote by ϕ the binary random variable

representing its state (or ϕ{t} akin to (2.1) if appropriate). The number of components,

n, is termed the order of the system.

Definition 2.2 (Structure function) When the state of a system is dependent only

on the state of the constituent components, then the binary random variable, ϕ, denoting

operation of the system is a functional of the component states.

ϕ = φ(Y1, . . . , Yn)
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Figure 2.1: A series (left) and parallel (right) system structure.

1 2

3 4

Figure 2.2: A simple 4 component system.

The mapping φ(·) : {0, 1}n → {0, 1} is called the structure function of the system.

The structure function for series and parallel systems (Figure 2.1) is trivial. A series

structure is one where every component must function for the system to function, whilst

a parallel structure is one where at least one component must function for the system

to function. Letting Y = (Y1, . . . , Yn) be the state vector of the components of the

system, the series system has structure function:

φ(Y) = min(Y1, . . . , Yn) =
n∏
i=1

Yi

and the parallel system has structure function:

φ(Y) = max(Y1, . . . , Yn) = 1−
n∏
i=1

(1− Yi)

Sometimes one can then derive the structure function of more complex systems by

simply combining series and parallel substructures. For example, Figure 2.2 shows a

series of components in parallel enabling one to immediately write down the structure

function:

φ(Y) = max(min(Y1, Y2),min(Y3, Y4))

= 1− (1− Y1Y2)(1− Y3Y4)

However, the simple bridging addition in Figure 2.3 results in a system not amenable

to such decomposition and leads to a substantially more complicated structure function:

φ(Y) = Y1Y2 + Y3Y4 + Y1Y4Y5 + Y2Y3Y5 − Y1Y2Y3Y5 − Y1Y3Y4Y5 − Y1Y2Y4Y5

− Y1Y2Y3Y4 − Y2Y3Y4Y5 + 2Y1Y2Y3Y4Y5 (2.2)
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1 2

3 4

5

Figure 2.3: Addition of bridging component to simple 4 component system.

Note in particular that any permutation of the indices represents the same system with

permuted labels for the components making immediate identification of a system via

the structure function challenging.

2.1.3.2 Path and cut sets

Derivation of (2.2) may seem mysterious at this juncture. This short subsection defines

path and cut sets and their link to the structure function.

Definition 2.3 ((Minimal) path set) A set of components, P , of a system is said

to be a path set if the system functions correctly whenever all the components in P

function correctly.

If no proper subset of P is a path set, then P is said to be a minimal path set.

Lemma 2.1 Let P be the collection of all minimal path sets of a system. If X is the

set of currently operational components, then the system as a whole is operational if

and only if ∃ Pi ∈ P s.t. Pi ⊆ X

For example, the path sets of the system in Figure 2.2 are:

{1, 2} {3, 4} {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} {1, 2, 3, 4}

However, only {1, 2} and {3, 4} are minimal path sets. The more complex bridge

system of Figure 2.3 has minimal path sets {1, 2}, {3, 4}, {1, 4, 5} and {2, 3, 5}.

Definition 2.4 ((Minimal) cut set) A set of components, C, of a system is said to

be a cut set if the system is failed whenever all the components in C have failed.

If no proper subset of C is a cut set, then C is said to be a minimal cut set.

Lemma 2.2 Let C be the collection of all minimal cut sets of a system. If X is the

set of currently failed components, then the system as a whole is failed if and only if

∃ Ci ∈ C s.t. Ci ⊆ X
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For example, the cut sets of the system in Figure 2.2 are:

{1, 3} {1, 4} {2, 3} {2, 4} {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} {1, 2, 3, 4}

However, only {1, 3}, {1, 4}, {2, 3} and {2, 4} are minimal cut sets. The more complex

bridge system of Figure 2.3 has minimal cut sets {1, 3}, {2, 4}, {1, 4, 5} and {2, 3, 5}.

This leads to the well known result:

Theorem 2.3 (Barlow and Proschan, 1981, p.12) The structure function of a

system with collection of all minimal path sets P1, . . . Pr and collection of all minimal

cut sets C1, . . . , Cs can be expressed in terms of the components of either:

φ(Y) = 1−
r∏
j=1

1−
∏
i∈Pj

Yi


=

s∏
j=1

1−
∏
i∈Cj

(1− Yi)


The interested reader can confirm that using the minimal path and cut sets above

for Figure 2.3 together with this Theorem does indeed result in equation (2.2). Note

that Y 2
i = Yi ∀ i.

2.1.3.3 System reliability

The structure function enables statements of probability to be made about the system

with knowledge of the component lifetime distributions. The extended notation from

§2.1.1 is used here.

Let Ti be the random variable denoting the failure time of component Yi and τ be

the random variable denoting the failure time of the system ϕ. Then:

P(Y {t}
i = 1) = E[Y {t}

i ] and P(Y {t}
i = 1) = P(Ti > t) = F̄Ti(t)

for each component. Thus, if components are assumed to be statistically independent

then for the system as a whole:

P(ϕ{t} = 1) = P(φ(Y{t}) = 1)

= E[φ(Y{t})]

= φ(E[Y {t}
1 ], . . . ,E[Y {t}

n ])

= φ(F̄T1(t), . . . , F̄Tn(t)) =: hφ(·)
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The function hφ(·) defined above is termed the reliability function associated with

structure function φ. In particular, this provides the system survival function and

hence lifetime distribution of the system.

F̄τ (t) = hφ(Y
{t}) =⇒ Fτ (t) = 1− hφ(Y

{t}) (2.3)

The lifetime density is then available if Fτ (·) is absolutely continuous. For example,

with the bridge system in Figure 2.3 and independent and identically distributed (i.i.d.)

Exponential(λ) components, (2.2) renders:

F̄τ (t) = 2e−5λt − 5e−4λt + 2e−3λt + 2e−2λt (2.4)

fτ (t) = 10λe−5λt − 20λe−4λt + 6λe−3λt + 4λe−2λt

2.1.3.4 Coherent systems

The class of all systems is commonly restricted to so-called coherent systems, though

said restriction is not unduly confining since it is in harmony with what one would

intuitively consider a reasonable design for a system.

The first requirement is that all components in the system should have some impact

on the working of the system. It would be unusual to include components which are

entirely extraneous to the correct operation of the system, so this is not limiting.

Definition 2.5 (Relevant component) Consider a system of order n with state vec-

tor of components (Y1, . . . , Yi−1, X, Yi+1, . . . , Yn). The ith component X is said to be

irrelevant if:

φ(Y1, . . . , Yi−1, 0, Yi+1, . . . , Yn) = φ(Y1, . . . , Yi−1, 1, Yi+1, . . . , Yn)

for all possible realisations of (Y1, . . . , Yi−1, Yi+1, . . . , Yn) ∈ {0, 1}n−1.

If a component is not irrelevant, it is defined to be a relevant component.

The second requirement which is placed on systems commonly studied in reliability

theory is that of monotonicity of the structure function. Intuitively, monotonicity

excludes the possibility that successfully repairing some component of a system could

result in a working system suddenly failing. Again this is compatible with what seems

a reasonable design for a system.
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Definition 2.6 (Monotone structure function) The structure function φ(·) of an

order n system is said to be monotone if

X ≤ Y =⇒ φ(X) ≤ φ(Y)

where X,Y ∈ {0, 1}n and the inequality on the left is taken element-wise.

In particular, this means that when repair of components is impossible, it must

be the case that φ(Y{t+ε}) ≤ φ(Y{t}) ∀ t ∈ [0,∞), ε > 0. In other words, a coherent

system with non-repairable components cannot recover from failure (especially not due

to further failure of components) — a logical requirement.

These concepts lead to the formal definition of system coherency.

Definition 2.7 (Coherent system) A system is coherent if and only if the structure

function representing the system is monotone and every component is relevant.

For a given number of components, the requirement for coherency dramatically

limits how many structure functions represent admissible systems. For example, when

n = 3, there are 22
3
= 256 mappings φ : {0, 1}3 → {0, 1}, but from Barlow and

Proschan (1981) there are only 5 coherent systems of order 3. The following Theorem

then allows an entirely set theoretic characterisation of coherent systems.

Theorem 2.4 (Butterworth, 1972) If a coherent system ϕ has collection of all min-

imal cut sets C, then
∪
Ci∈C Ci is the set of all components in ϕ.

Conversely, any collection of sets C such that Ci ̸⊂ Cj, ∀Ci, Cj ∈ C defines a

collection of minimal cut sets of some coherent system comprising the components∪
Ci∈C Ci.

Note that all instances of ‘cut set’ can be replaced by ‘path set’ in Theorem 2.4

without affecting the correctness of the statement.

2.1.3.5 System signature

A more recently discovered additional tool for the study of coherent systems with i.i.d.

lifetimes is the system signature, providing an elegantly simple representation of a

system.
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Definition 2.8 (System signature) Consider a coherent system of order n, with in-

dependent and identically distributed component lifetimes. The signature of the system

is the n-dimensional probability vector s = (s1, . . . , sn) with elements:

si = P(τ = Ti:n)

where τ is the failure time of the system and Ti:n is the ith order statistic of the n

component failure times.

Note that the failure time of a coherent system must coincide with the failure of a

component of the system. The ith element of the signature is the probability that it

was the ith component failure which resulted in the system failure.

Computing the signature of a specific system is an exercise in combinatorial math-

ematics. The series system and parallel systems can be immediately written down as

s = (1, 0, . . . , 0) and s = (0, . . . , 0, 1) respectively: the series system always fails when

the first component does and the parallel system always fails when the last component

does.

In less trivial cases the signature can be found by considering all permutations of

the order in which the n components may fail. Since the Ti are considered i.i.d., each

of the n! permutations for order of failure is equally likely. The signature is then the

relative frequency with which the ith ordered failure caused system failure across all

permutations.

For example, in the bridge system (Figure 2.3), the permutation (3, 4, 2, 1, 5) means

component 3 failed first, followed by component 4 and so on, so that T3 < T4 < T2 <

T1 < T5. Under this ordering, the system would fail at τ = T2 = T3:5. To see this, notice

that {3} and {3, 4} do not contain any cut sets, but {3, 4, 2} ⊃ {2, 4}, meaning that

the system continued to function until component 2 failed (the third failure). Checking

all 5! = 120 permutations (which takes less than a second on a computer) and counting

the order statistic of failure in each case leads to the signature by a simple tabulation

of relative frequencies:

s =

(
0

120
,
24

120
,
72

120
,
24

120
,

0

120

)
= (0, 0.2, 0.6, 0.2, 0) (2.5)

Thus, both structure function and system signature require computation of the cut

sets, but the signature thereafter involves simple permutation checks, whilst the struc-

ture function involves laborious (albeit elementary) algebra. This means the calculation
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of signature is more readily automated on a computer. The author has developed R (R

Core Team, 2012) code for calculating the signature of an arbitrary system, available

in Aslett (2012), which is a minor contribution of this thesis.

A related problem is computation of all possible signatures for coherent systems of

a given order: Navarro and Rubio (2009) is recent work on an algorithmic approach to

exhaustively computing this and Chapter 5 of this thesis also makes a related contri-

bution in this area.

With the signature computed, an analogous result to (2.3) enables expression of

the system lifetime distribution purely via the lifetime distribution of the components.

Theorem 2.5 (Samaniego, 1985) Let T1, . . . , Tn ∼ T be the i.i.d. component life-

times of an order n coherent system with signature s. Let τ be the system lifetime.

Then,

F̄τ (t) := P(τ > t) =
n∑
i=1

si

i−1∑
j=0

(
n

j

)
FT (t)

j F̄T (t)
n−j (2.6)

The interested reader can confirm that using the signature in (2.5) together with

(2.6) and letting T ∼ Exponential(λ) gives an identical result to that obtained via the

structure function (2.4).

Corollary 2.6 (Samaniego, 2007) Let T1, . . . , Tn ∼ T be the i.i.d. component life-

times of an order n coherent system with signature s. Let τ be the system lifetime. If

FT (·) is absolutely continuous then,

fτ (t) := −(∂/∂t)P(τ > t) =
n∑
i=1

i si

(
n

i

)
FT (t)

i−1 F̄T (t)
n−i fT (t) (2.7)

2.1.3.6 Summary

In summary, the key well-known ideas expounded in this section about structural

reliability have built up the results necessary for examining the lifetime distributions of

systems of components, based on lifetime distributions for the components themselves.

This is a carefully chosen path for the purposes of this thesis through what is a

tremendously rich subject area. Introductions to the extensive other uses and results

relating to structure functions can be found in Barlow and Proschan (1981) and simi-

larly for system signatures in Samaniego (2007).
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2.1.4 Masked system lifetime inference

The most common inferential situation with reliability data is to have lifetimes (or

censoring information) on components and systems under examination. However, there

is an important class of problems where the information available for statistical analysis

is more limited. One such situation — a situation which preoccupies this thesis — is

that of so-called masked system lifetime data. This is data where one commonly has

failure times for the system under examination, but no data on the component lifetimes

directly.

Such data can arise in a variety of applications. For example, repair of a complex

system may involve identifying which major subsystem has failed and replacing it en-

tirely, so that the subsystem lifetime is known, but not the lifetimes of the components

within it or even which components had failed, unless an autopsy is performed. Such

an autopsy may be impractical or cost prohibitive relative to the repair, such as in

consumer computer repair. Another example would be where many systems are sent

into the field, but upon failure the system may be discarded and only failure time of

the system as a whole reported.

The inference problem with data of this kind has been considered before. A rich

literature (Reiser et al., 1995; Kuo and Yang, 2000, among others) has investigated

Bayesian inference in competing risk, or essentially series systems. There has been

less work on inference for generally structured systems, the most notable exception

being in Ng et al. (2012), where frequentist inference is performed on the hazard rate

of the components. G̊asemyr and Natvig (2001) provide a Bayesian view by deriving

likelihoods and conjugate priors for Exponentially distributed components directly.

The problems addressed in Chapters 4 and 6 relate to data of this kind.

2.1.5 Network reliability

In the probability and statistics literature the term network is usually used to indicate

a structural reliability setting where the links between components, as opposed to the

components themselves, are unreliable. Most of §2.1.3 can be developed from this

viewpoint and there is a very natural duality in all the results, so it is not repeated

here. Chapter 5 discusses the distinction at greater length.
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2.1.6 Repairable systems

Up to this juncture, consideration has implicitly only been given to components which

are not repairable. In this way, the system always moves toward a more degraded state

until ultimately it fails once there is no longer a functioning path through the system.

The next section introduces the tools to enable study of repairable redundant sys-

tems, whereby repair can be non-disruptively performed on a system and Chapter 4

focuses entirely on inferential challenges in such repairable model settings.

2.2 Stochastic processes

The methods described in the previous section are a common approach in reliability

theory. It focuses attention on either the random operational status at a point-in-time

(Y {t}, ϕ{t}) or else focuses on the random failure time (T, τ).

When considering systems— in particular systems whose components are repairable

— there is an expanded view which makes more explicit the fact that the state of the

system is changing over time: that is to acknowledge that the state of the system, ϕ,

is a stochastic process.

Definition 2.9 (Stochastic process) A stochastic process is a set of random vari-

ables {Φ(t) : t ∈ T}, where T denotes the index set. The state space of a stochastic

process is the space of realisable values of Φ(t).

Commonly T will be a spatial, time or spatio-temporal index. Only time indices

are considered herein. Thus in the reliability setting of this chapter, the extended

notation, ϕ{t} (or Y {t}), denotes the state of the stochastic process representing the

operational condition of a system (or component) at time t, where time is now allowed

to vary. Hereinafter, when modelling reliability this thesis will take the state space of

the stochastic process to be discrete and finite (denoted Ω) and the time index space

to be [0,∞).

Rather than contemplating only overall failure and operation ({0, 1}) as the system

states, the operational state of the constituent components may lead to a multi-state

picture. There are different ways to formulate this. For now, consider the conceptually

simplest formulation: take all 2n combinations of possible component states and add
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System Component States

State Y1 Y2 Y3 Y4 Y5

1 1 1 1 1 1

2 1 1 1 1 0

3 1 1 1 0 1

4 1 1 1 0 0

5 1 1 0 1 1

6 1 1 0 1 0

7 1 1 0 0 1

8 1 1 0 0 0

9 1 0 1 1 1

System Component States

State Y1 Y2 Y3 Y4 Y5

10 1 0 1 1 0

11 1 0 0 1 1

12 0 1 1 1 1

13 0 1 1 1 0

14 0 1 1 0 1

15 0 0 1 1 1

16 0 0 1 1 0

17–32 system failed states

Table 2.1: A labelling of all combinations of component states for which system is

operational (1–16) and various failure states (17–32) for bridge system (see Figure 2.3).

one numbered system state for each combination. For reasons that will become clear

in §2.2.2 the combinations where the system is failed are not separately identified but

rather pooled together.

For example, a possible labelling for the bridge system of Figure 2.3 is shown

in Table 2.1. Now ϕ{t} ∈ {1, 2, . . . , 32} ∀ t ∈ [0,∞) and moves between states are

determined by the underlying component failures. Without repair the chosen labelling

implies ϕ{t+ε} ≥ ϕ{t} ∀ t ∈ [0,∞), ε > 0. When component repair is introduced, the

stochastic process can also make ‘backward’ moves to previous states.

To reduce deforestation and simplify exposition, hereinafter the example used to

illustrate the concepts will be an elementary two component parallel system with la-

belling as in Table 2.2, although the reader may hold in mind the bridge system as a

more complex scenario. The general evolution of the stochastic process can be visu-

alised as in Figure 2.4. The first state change represents a failure of component Y2, and

the subsequent return to state 1 represents its repair. In such a system, there would

be correct function up until the ultimate move to state 4. This represents the system

in its fullest generality, with random failure times and random repair times. From a

modelling perspective, this means that in addition to component lifetime distributions,

one must now also specify component repair time distributions to represent the random
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System Component States

State Y1 Y2

1 1 1

2 1 0

3 0 1

4 0 0

Table 2.2: A labelling for the elementary two component parallel system.

�{t}

1
2
3
4

System Failedt

Figure 2.4: Example realisation of stochastic process for a two component parallel

system.

time required to repair or replace a component to correct operation.

An essential point to note is that there is commonly a restriction on which states

the stochastic process may move between. In the current example, a move 2 → 3 or

3 → 2 would not be possible: it represents simultaneous failure of one component and

repair of the other, which would require two continuous random variables (failure time

and repair time) to attain identical values, an event of probability measure zero.

2.2.1 Continuous-time Markov chains

There are two simplifying assumptions which make stochastic processes amenable to

analysis. These assumptions are that the stochastic process satisfies the so-called

Markov property and homogeneity.

Definition 2.10 (Markov property) A stochastic process satisfies the Markov

property if

P(ϕ{tn} = in |ϕ{t1} = i1, . . . , ϕ
{tn−1} = in−1) = P(ϕ{tn} = in |ϕ{tn−1} = in−1)

for all i1, . . . , in−1, in ∈ Ω and any t1 < t2 < · · · < tn ∈ [0,∞).
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Definition 2.11 (Homogeneous process) Let the transition probability be defined

as:

pij(s, t) := P(ϕ{t} = j |ϕ{s} = i) where s ≤ t

Then ϕ is a homogeneous process if pij(s, t) = pij(0, t − s) ∀ i, j ∈ Ω, s ≤ t ∈ [0,∞).

The transition probability is then written simply pij(t− s).

The Markov property simplifies affairs greatly, since subsequent moves in the state

space depend only upon the most recently observed state and not upon the entire his-

tory of the process. In a similar vein, homogeneity means that state move probabilities

after a specific sojourn time are independent of the total elapsed time up to that point.

Definition 2.12 (Continuous-time Markov chain) A stochastic process with time

indexed by the set [0,∞) is called a continuous-time Markov chain (CTMC) if it is

homogeneous and satisfies the Markov property.

There is an important property which flows from this:

Theorem 2.7 (Brémaud (1999), p.346) A continuous-time Markov chain satisfies

the strong Markov property. That is, conditional on knowing the state of the chain at

some stopping time t, ϕ{t} = k say, the chain before time t and the chain after time t

are independent.

A stopping time is defined rigorously in Brémaud (1999). For the purposes of this

thesis, the strong Markov property is only invoked for times at which transition to a

state occurs (or ‘jump times’) which are in fact stopping times.

Further detailed treatment is omitted for brevity, but it is important to note that

the characterisation in the remainder of this subsection is not a prescriptive definition,

but rather is one of several equivalent views of continuous-time Markov chains which

follow from the Markov and homogeneity assumptions. The interested reader should

consult Grimmett and Stirzaker (2001) or Brémaud (1999) for the proof of results

which form the narrative elucidated here. The objective is to maintain focus on an

intuitive link to the subject-matter of reliability in this chapter.
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2.2.1.1 Formulating a CTMC model

Continuous-time Markov chains are stochastic processes whose state sojourn times are

Exponentially distributed, with fixed state move probabilities. Further, the sojourn

time may be viewed as the minimum of competing Exponentially distributed ‘clocks’,

one for each permissible move. In other words, given that the current state is i and

given an Exponentially distributed timer for each permissible move i → j, i ̸= j, the

time until any move is the Exponentially distributed minimum of the collection1, the

corresponding minimal timer being the state to which the process moves.

Therefore, one strategy for defining a continuous-time Markov chain is to define

the (Exponential) rate at which each state moves to each other state, the state sojourn

then being automatically determined.

This finds natural expression in the m ×m square generator matrix traditionally

used to represent an m state continuous-time Markov chain:

G =


−λ1· λ12 λ13 · · · λ1m

λ21 −λ2· λ23 · · · λ2m
...

...
. . .

...
...

λm1 λm2 λm3 · · · −λm·

 (2.8)

where λij is the rate of the Exponentially distributed timer for the state move i → j

and λi· :=
∑

j∈Ω
i̸=j

λij is the rate of the Exponentially distributed sojourn in state i.

Note that
∑m

j=1Gij = 0 ∀ i. The special case λij = 0 implies that a move i → j is

impossible.

One may think of rows representing the current state and columns as candidate

moves. Conceptually, if the process starts in state 1, then the collection of ‘timers’

{Xi ∼ Exp(λ1i)}mi=2 begin. Then if xj is the minimal realisation of the timers, a move

i → j is inserted at time xj. Again a new set of timers corresponding to state j are

started to determine the next move.

The model formulation is completed by defining the starting distribution of states

at t = 0 by a stochastic vector π = (π1, . . . , πm)
T with

∑m
i=1 πi = 1.

1Recall the elementary result:
X1 ∼ Exp(λ1), . . . , Xn ∼ Exp(λn) =⇒ min(X1, . . . , Xn) ∼ Exp (

∑n
i=1 λi)
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2.2.1.2 Relationship to reliability modelling

A continuous-time Markov chain provides a natural model of a repairable system when

the component lifetime and repair time distributions are Exponential. Consider the

two component parallel system. As per Table 2.2, there are 4 possible states leading to

a 4× 4 generator matrix. If the lifetime of a component is Exponential(λf ) distributed

and the repair time of a component is Exponential(λr) distributed, then it is claimed

that a continuous-time Markov chain models this system, with generator matrix:

G =


−2λf λf λf 0

λr −λf − λr 0 λf

λr 0 −λf − λr λf

0 λr λr −2λr

 (2.9)

If the system always commences operation in fully functioning order, then one may

simply specify π = (1, 0, 0, 0)T. Note in particular that state moves which require

more than one simultaneous failure or repair have rate set to 0, since it represents the

situation where two Exponentially distributed random variables attain identical values,

which has probability measure zero.

The claim may be seen to be true as a consequence of the memoryless property

of the Exponential distribution: the individual component failure timers restarting

on every state move does not affect the overall component lifetime distribution. More

precisely, given that the time has reached t > 0, the residual lifetime of an Exponentially

distributed component is still Exponentially distributed with the same parameter.

Thus in general, a continuous-time Markov chain model can be established by

having a chain state for each system state, with Exponential rates between those states

which are adjacent in the sense of differing by at most one component state.

2.2.1.3 Transition probabilities

The generator matrix provides a means of explicitly computing the transition proba-

bilities. These are represented by a matrix Pt in which are entries pij(t) = P(ϕ{s+t} =

j |ϕ{s} = i) for arbitrary s ≥ 0. Note that ϕ(s,s+t) is not necessarily identically i:

multiple state moves may occur in that interval.
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Lemma 2.8 If a continuous-time Markov chain is represented by a generator G, then

the matrix of transition probabilities is:

Pt = etG

etG is the matrix exponential, defined via the usual series expansion of the expo-

nential function:

etG =
∞∑
n=0

tnGn

n!

Although this constitutes the definition of the matrix exponential, it is not prudent

to attempt calculating it directly in this manner, taking powers of matrices. The

humorously titled paper by Moler and Van Loan (2003) provides detailed insights into

the issues which are critical in implementation.

2.2.1.4 Limiting and stationary distributions

An interesting property (if it exists) of a continuous-time Markov chain is the so-called

stationary distribution, which represents a chain in a stochastic steady state.

Definition 2.13 (Stationary distribution) A stochastic vector β is the stationary

distribution of a continuous-time Markov chain with transition probability matrix Pt if

βTPt = β
T ∀ t > 0.

Thus, if the chain is randomly started according to the stochastic vector β, then

the distribution of states is unchanged at all future times.

Corollary 2.9 A stochastic vector β is the stationary distribution of a continuous-

time Markov chain with generator G if βTG = 0.

For example, solving the equation from Corollary 2.9 for β shows that the stationary

distribution of the two component parallel system is(
λ2r

(λf + λr)2
,

λfλr
(λf + λr)2

,
λfλr

(λf + λr)2
,

λ2f
(λf + λr)2

)
The technical requirement for the existence of a stationary distribution is that the

chain be irreducible.

Definition 2.14 (Irreducible chain) A continuous-time Markov chain is irre-

ducible if and only if every state is accessible from every other state. Equivalently,

there must be a t > 0 such that every element of Pt is strictly positive.
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Another related natural question arises of the long-run behaviour of chains when

not necessarily started according to the stationary distribution (π ̸= β). In subject-

matter terms: if a system is in the field for an extended duration and undergoes failure

and repair as described by a continuous-time Markov chain, what can be said about

the proportion of time the system is operational, degraded and failed?

Lemma 2.10 Given an irreducible continuous-time Markov chain with stationary dis-

tribution β, the stationary distribution is unique and limt→∞ pi·(t) = β ∀ i

Thus, irrespective of starting state, in the limit the distribution of states converges

to the (unique) stationary distribution of the chain. In the two component parallel

system, this leads to the intuitively obvious result that in the long-run the system

will have higher uptime when the rate of repair is substantially larger than the rate of

failure. In particular, one can quantify that to achieve on average “five nines” uptime2

from such a system in the long run, the rate of repair must be at least 316 times the

rate of failure, or roughly speaking components with failure rate 1yr−1 would need to

be repaired at a rate ≈ 1day−1.

2.2.1.5 Simulation of a continuous-time Markov chain

The characterisation described above makes simulation easy, since it is descriptive

of the probabilistic process. However, rather than having to simulate up to m − 1

Exponential random variables for each state move, there is the following algorithm

which simplifies matters:

Algorithm 2.1 To simulate a continuous-time Markov chain with generator G as in

(2.8) and starting distribution π = (π1, . . . , πm)
T:

1. Let t = 0, draw the starting state, i, from the probability vector π and set ϕ{0} = i.

2. Draw the sojourn time, s, in state i from an Exponential distribution with rate

λi· and set ϕ[t,t+s) = i.

2A reliability engineering term meaning 99.999% availability over a given period of time. For
example, five nines uptime in a year requires a system to be unavailable for no more than a total of
5 minutes and 15 seconds over a one year period.
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3. Draw the state move, j, from the discrete distribution:

P(j) =
λij
λi·
, j ̸= i

4. Set t = t+ s and set i = j, then loop to step 2.

The algorithm should be looped for as long as necessary and ϕ will then be a realisation

of the stochastic process. □

Generation of Exponentially and discretely distributed random variates is a well

understood problem, an excellent reference on random variate generation being Devroye

(1986).

2.2.1.6 Absorbing states

If there exists some i such that λij = 0 ∀ j, then the state i is said to be absorbing. If the

process enters this state at time t, then necessarily ϕ[t,∞) = i — that is, once entered

an absorbing state can never be left. In particular, note that this means any chain

with at least one absorbing state is not irreducible and thus there is not necessarily

any stationary or limiting distribution. If there is exactly one absorbing state (which is

accessible from at least one of the other states) and the subgenerator of non-absorbing

states is irreducible, then the limiting distribution is trivially the absorbing state with

probability 1.

Absorbing states can be artificially introduced to aid analysis of a model if a partic-

ular state or set of states is of interest. This idea leads to the development of Phase-type

distributions so deeper discussion follows in the sequel.

2.2.1.7 Summary

This subsection has provided a high-level description of continuous-time Markov chains

and how they can provide a natural model for repairable systems when component

lifetimes and repair times are Exponentially distributed. Also discussed were important

properties and a means of simulation of such processes.

For a deeper treatment of the theory (without link to the subject matter), see

Brémaud (1999) and Grimmett and Stirzaker (2001).
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2.2.2 Phase-type distributions

As mentioned, absorbing states can be artificially introduced into continuous-time

Markov chains to aid analysis of the model when a particular state or set of states

is of interest. For example, in a reliability context it may be desirable to have an

absorbing state represent all component combinations for which the system is failed.

This is artificial in the sense that once a component failure causes system failure, the

model implies no repair is ever attempted. However, it then enables one to answer

questions such as: what is the probability the component has failed by time t?

Taking the (repairable) two component parallel system as an example, one may

replace the final row of the generator matrix in (2.9) with all zeros, resulting in a chain

with one absorbing state (the state representing system failure), as follows:

G =


−2λf λf λf 0

λr −λf − λr 0 λf

λr 0 −λf − λr λf

0 0 0 0

 (2.10)

Then, using Lemma 2.8 the probability that the system has experienced a failure by

time t is simply:

P(ϕ{t} = 4) = P

(
4∪
i=1

[
ϕ{0} = i ∩ ϕ{t} = 4

])

=
4∑
i=1

P(ϕ{0} = i)P(ϕ{t} = 4 |ϕ{0} = i)

=
4∑
i=1

πi pi4(t)

This is simply the fourth element of the vector formed from the product πTetG,

which affords some intuition for the formal definition of a Phase-type distribution.

Definition 2.15 (Phase-type distribution) Take any continuous-time Markov

chain on a finite discrete state space of n+1 states, one of which is absorbing. Without

loss of generality, the generator of the Markov chain can be expressed as:

G =

 S s

0T 0

 (2.11)
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where S = (Sij) is the matrix of transition rates between non-absorbing states i and j

for i ̸= j and i, j ∈ {1, . . . , n}, whilst s = (s1, . . . , sn)
T is the vector of transition rates

from state i to the absorbing state and 0 is a vector of n zeros.

A (continuous) Phase-type distribution (PHT) is defined to be the distribution of the

time to entering the absorbing state of a continuous-time Markov chain with generator

G and vector of initial state probabilities π = (π1, . . . , πn)
T.

The distribution and density functions are traditionally expressed in terms of the

sub-generator of the rates between non-absorbing states and the vector of exit rates:

T ∼ PHT(π,G) =⇒

FT (t) = 1− πT exp(tS)e

fT (t) = π
T exp(tS)s

where e is a vector of 1’s of the appropriate dimension; t ∈ [0,∞) is the time to

absorption; and exp(tS) is the matrix exponential.

Note in particular that because G has a final row of zeros, the top left n× n block

of Gk is identically Sk for all k ≥ 0. Together with the fact that the row sums of etG

are 1, this means 1− πT exp(tS)e = πT exp(tG)(0, . . . , 0, 1)T.

Phase-type distributions were first introduced in Neuts (1975). They are closely

related to the retrospectively named Coxian Phase-type distribution (Cox, 1955) which

is a structured Phase-type distribution with non-zero entries only on the diagonal

and upper diagonal. Indeed all acyclic Phase-type distributions (those with upper-

triangular generators) have a unique Coxian representation (see Dehon and Latouche,

1982; Cumani, 1982, the latter being a reliability perspective). The second chapter of

Neuts (1994) and the paper by Asmussen (2000) contain a general background.

2.2.2.1 Random variate generation

Generation of Phase-type random variates can, in principle, use Algorithm 2.1 as a

base: one simply uses the full generator G in simulation until state n + 1 is entered,

the time of such a transition then being a realisation of a T ∼ PHT(π,G) random

variate. Some efficiency can be gained by initially ignoring the generation of sojourn

times, only recording the path of the implicitly embedded discrete Markov chain: the

total time in each non-absorbing state is then Erlang(ki, λi·) distributed, where ki is

the total number of excursions to state i. Details of this approach are in Neuts and

Pagano (1981).

30



2.2.2.2 Proposed usage

It is proposed to use Phase-type distributions along the lines given to motivate them

above: as a means of modelling failure time of repairable redundant systems. Specifi-

cally, by merging those system states representing failure into one (or more) absorbing

states, a model is provided which can be used to infer component lifetime and repair

time rates given only data on the overall system failure. Relating it to a more complex

example again, the reason for pooling of states in Table 2.1 should now be clear: these

represent failure and are absorbing states of a continuous-time Markov chain. As such

labelling could cease at 17 and then ϕ{t} ∈ {1, 2, . . . , 17} ∀ t ∈ [0,∞) with ϕ[tf ,∞) = 17

for tf = inf{t : ϕ{t} = 17}.

The high level purpose bears repetition: it is now possible to consider questions of

inference for masked system lifetime data in the more complex setting of a repairable

system. In this scenario the component lifetimes and indeed the ultimate pre-failure

state of the system are unknown.

The use of Markov chains to model repairable systems is not a new idea in itself:

as early as Barlow and Proschan (1965) absorbing Markov chains are considered in

this way. Phase-type distributions specifically were used in Neuts and Meier (1981)

and Neuts et al. (2000) for an analysis of repairable systems. However, bringing the

chapter full-circle (recall p.7), the overwhelming majority of usage in the literature has

been in . . .

“. . . probabilistic analysis of component lifetimes, system lifetimes, and in-

deed matters of ‘optimal’ design of those systems — here the model and

parameters are usually treated as known”.

It is the second route, that of inference, which has been less explored with such models.

Cano et al. (2010) is a recent example of this kind of model, but crucially the data

available there are not masked: the component lifetimes are known directly, as is the

schedule of repair. This matter will be revisited with a review of inferential procedures

for Phase-type distributions at the end of the next chapter which covers statistical

methodology.
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Chapter 3

Statistical Methodology

The work in this thesis is concerned primarily with statistical inference. Given observed

data and a family of models for the data generating process, statistical inference seeks

to establish details of the model — commonly estimates of the parameter values which

index the family and associated uncertainty — from the data. The objective is to infer

not just the estimates with mathematical rigour, but also to quantify the degree of

uncertainty in those estimates through the language of probability theory.

This chapter provides an overview of the Bayesian approach to inference, contrasting

it where appropriate with the frequentist approach which, outside the statistics com-

munity, currently remains better known. It continues by introducing Markov chain

Monte Carlo (MCMC), the computational framework often required due to the in-

tractable nature of many of the integrals which arise in Bayesian applications. The

chapter concludes with a description of the MCMC methodology for Bayesian inference

of Phase-type models developed by Bladt et al. (2003), the extension of which forms

the basis for the novel contributions of Chapter 4.

3.1 Bayesian inference

The dominant theory of inference for the majority of the twentieth century was so-called

‘frequentism’. In the frequentist school of thought, probability is taken to represent the

hypothetical long term proportion of the time an event of interest occurs and, crucially,

parameters of probability models are taken to be fixed but unknown quantities. Pearson

worked extensively on frequentist type problems at the turn of the twentieth century,
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though many of the foundations of frequentist inference as practiced today are found

in the classical work of Fisher (1922).

Bayesian inference technically predates the frequentist approach, being traced back

to the thought experiment of throwing balls onto a square table by Bayes (1763) and

to the ‘inverse probability’ discovered by Laplace (1774). Both used uniform prior

distributions: for Bayes it was a consequence of the ball throwing process, whilst

Laplace considered it an intuitive axiom (‘principle of insufficient reason’). However,

Bayesian inference largely faded until reappearing in the modern form recognisable

today due to, among many others, Jeffreys (1939) and Savage (1954).

Philosophically the Bayesian school encompasses both objective probability (similar

in interpretation to frequency probabilities) and subjective probability (viewing prob-

ability as expressing a degree of personalistic belief). The pivotal additional factor dif-

ferentiating Bayesian inference from frequentist theory is the treatment of parameters

of probability models as realisations of a random variable, enabling direct statements

of probability about them to be formulated.

Consider observations y = {y1, . . . , yn} and a probability model which it is believed

generated the data, having density function fY (y;ψ) where the dependence on the

parameter(s) ψ is made explicit. Without loss of generality, ψ may be a vector of

parameters. Bayesian inference considers ψ to be the unknown realisation of a random

variable, so that one can consider the joint density of the random variables Y and Ψ:

fY,Ψ(y, ψ) = fY |Ψ(y |ψ) fΨ(ψ) (3.1)

where simply fY |Ψ(y |ψ) := fY (y;ψ).

Thus given data y, by application of Bayes’ Theorem one can directly encapsulate

the uncertainty in ψ as:

fΨ |Y (ψ |y) = fY (y;ψ) fΨ(ψ)∫
Ω
fY (y;ψ) fΨ(dψ)

(3.2)

∝ fY (y;ψ) fΨ(ψ)

where Ω is the sample space of Ψ. Proportionality follows from noticing the denom-

inator is independent of ψ due to the integral. (3.2) is referred to as the posterior

distribution of ψ and encapsulates all knowledge about the unknown parameters.

In practice the integral in the denominator of (3.2) — the normalising constant —

is often analytically intractable. This fact impeded widespread adoption of Bayesian
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inference until the advent of the computer and the development of computational

techniques like Markov chain Monte Carlo. Thus, the popularity of the Bayesian

approach only really erupted in the applied statistics community as recently as the

1990s.

3.1.1 Likelihood function

The first term in the numerator of (3.2) is often written L(ψ;y) := fY (y;ψ) to em-

phasise the fact that ψ is actually variable and the data y are fixed in this context.

This was termed the likelihood by Fisher (1922), who argued that it was often all that

was necessary for inference, whereby one simply maximises L(ψ;y) with respect to ψ

obtaining the so-called maximum likelihood estimate, ψ̂. However, the likelihood itself

is not a probability distribution for ψ because in general
∫
Ω
L(ψ;y) dψ ̸= 1, making

expression of uncertainty about the point estimate ψ̂ a somewhat more opaque task

than the natural expression of posterior probability in Bayesian inference.

Fisher (1930) argued in favour of the ‘fiducial probability’ of ψ which he defined as

∂
∂ψ
FY (y;ψ) in an attempt to attach a direct probabilistic uncertainty to ψ, but almost

nobody adheres to this idea in the modern literature after extensive criticism (e.g.

Lindley, 1958). Thus for non-standard models expression of uncertainty in ψ̂ is limited

to stating upper/lower confidence limits, a specified hypothetical long run proportion

of which contain the ‘true’ ψ, based on asymptotic analysis.

None-the-less, the likelihood is the only way in which the data enter the posterior

distribution and so as the quantity of data observed increases, the likelihood term

dominates the posterior, leading in many cases to approximate agreement between

frequentist maximum likelihood and highest a posteriori density values (the mode of

the posterior distribution). In particular, Bayesian inference also obeys the ‘likelihood

principle’, which is to say that any two models with the same likelihood L(ψ;y) result

in the same inferences: the likelihood conveys all the information in the data (and

pedantically, the minimal sufficient statistic in the likelihood conveys all the informa-

tion in the data about ψ specifically).
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3.1.2 Prior distribution

The prior distribution is the factor fΨ(ψ) from (3.2). In admitting the treatment of

the parameters as a random variable, a Bayesian analysis must specify the distribution

of that random variable independently of the data due to the decomposition (3.1). It

represents the ‘state of knowledge’ of the analyst prior to observing the specific data

under examination and is often considered the most controversial aspect of Bayesian

inference.

This controversy is because the choice of prior is always a subjective decision, even

when that decision is to attempt to model ignorance. However, it can be argued that

so long as the prior choice is transparent it increases the flexibility of modelling: one

can intentionally choose a ‘sceptical prior’ — one which assigns lower probability to

some favourable outcome — meaning probability weight in favour of that outcome is

even more compelling. In any event, one should bear in mind an oft overlooked fact

that the choice of the model for the data, fY (·;ψ), is often just as much a subjective

choice as the prior.

3.1.2.1 Common prior choices

The prior is most commonly from some parametric family of distributions and the pa-

rameters of the prior are referred to as hyperparameters. There are several approaches

commonly taken to prior specification. Broadly speaking, these would include the fol-

lowing specifications: by a personal decision maker; to accord with expert opinion; for

mathematical/interpretive convenience; or, to attempt to seek objectivity.

Full specification of the prior in accordance with the beliefs of the particular indi-

vidual performing the analysis is highly appropriate in the subjective probability and

decision theoretic usage of Bayesian inference: the result of the inference is then the

mathematically rational updating of Your beliefs about ψ in light of evidence observed

in the form of the data under examination.

Specification of a prior to accord with expert opinion is an open area of research

in itself, called ‘prior elicitation’. At the simplest level, this might involve pooling

the opinions of experts on credible ranges for the parameters of the model and using

a Gaussian prior with upper and lower α% points fixed. Of course, this arguably

raises many more questions than it solves if the experts do not understand probability
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theory well. However, unless the parameters of the model are easily interpretable, then

even experts in probability theory will struggle to translate their knowledge into a

probabilistic prior. Garthwaite et al. (2005) and O’Hagan et al. (2006) are relatively

recent reviews of techniques to address this.

Consequently, the prior is often chosen for reasons of convenience, particularly where

conjugacy results exist. A conjugate prior distribution is one which, when multiplied by

the likelihood, results in an expression which is algebraically from the same parametric

family as the prior distribution, up to a normalising constant. The advantage of this is

that the posterior normalising constant can then be immediately written down merely

by inspection, without having to carry out the integral in the denominator of (3.2). In

particular, if the likelihood is from the exponential family in canonical form:

fY (y;ψ) := m(y) exp{s(y)Tψ − k(ψ)}

where s(y) is a sufficient statistic, then taking the prior specification as Exponential

family fΨ(ψ) ∝ exp{ηTψ − νk(ψ)} leads to the conjugate posterior:

fΨ |Y (ψ | y) ∝ exp{(s(y) + η)Tψ − (1 + ν)k(ψ)}

For example, in canonical form a likelihood of n independent Exponentially dis-

tributed observations has:

Exp(λ) =⇒ m(y) = 1, s(y) = −nȳ, ψ = λ, k(ψ) = −n log λ

Note also that a Gamma distribution in canonical form has:

Gamma(α, β) =⇒ m(y) = y−1, s(y)T = (log y,−y), ψT = (α, β),

k(ψ) = log Γ(α)− α log β

Consequently, the conjugate prior of an Exponential likelihood is in the canonical form

fΛ(λ) ∝ exp{ηλ + νn log λ}, which can be identified as Gamma with α = nν and

β = −η. This leads to a posterior:

fΛ |Y (λ |y) ∝ exp{(−nȳ + η)λ+ (1 + ν)n log λ}

∝ exp{(−nȳ − β)λ+ (n+ α) log λ}

which is also Gamma with shape α + n and reciprocal scale β + nȳ. Simply put, a

Gamma(α, β) is the conjugate prior for an Exponential likelihood, with the posterior

being Gamma(α + n, β + nȳ).

36



Another convenience prior is one which is often purported to express ‘ignorance’

about ψ a priori, though it is not really an expression of ignorance. This often involves

a (possibly conjugate) prior with hyperparameters chosen to result in very high vari-

ance. Alternatively, since the prior is in both numerator and denominator of (3.2), any

multiple of the prior effectively makes no difference, so some practitioners more contro-

versially use priors which do not integrate to 1 — such improper priors can be dangerous

though, because the posterior is no longer guaranteed to be a proper probability dis-

tribution. The extreme version of this is a flat improper prior, fΨ(ψ) = c ∀ψ (c > 0),

which effectively results in solutions which correspond to Fisher’s fiducial probabilities

and is not an approach advocated in this thesis.

There have been at least two attempts at creating a broadly prescriptive means of

specifying the prior in an objective fashion. The first was developed by Jeffreys (1946)

to address the concern that Bayesian inference is sensitive to the parameterisation

chosen for the problem. The Jeffreys prior is specified as fΨ(ψ) ∝ J(ψ)1/2 where J(ψ)

is the Fisher information for ψ. This prior ensures invariance of the posterior to re-

parameterisation of the model. However, this can result in improper priors and the

results for multiparameter models are controversial.

The second, developed by Bernardo (1979) defines a ‘reference prior’ which seeks

to maximise the contribution of the likelihood to the posterior, by maximizing the

expected Kullback-Leibler divergence between prior and posterior with respect to the

distribution of a sufficient statistic of the parameter. However, again even in simple

models improper priors can result.

3.1.3 Posterior analysis

Formally, all questions of interest in a Bayesian inferential setting can then be answered

using the posterior distribution. Commonly, this may involve simple density plots or

summaries such as expectation and variance; posterior modal value; or highest posterior

density intervals. It may often arise that interest is actually in some functional of the

parameters which can also be handled relatively straight-forwardly.

Indeed, situations which lead to greatly increased complexity in a frequentist set-

ting, such as some elements of ψ being nuisance parameters, can be handled elegantly

through standard probability theory. For example, if ψ = (θ, η) where θ is of inter-
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est and η is a nuisance parameter required for completeness of the model, then in a

Bayesian context one can simply marginalise to obtain the posterior for θ:

fΘ(θ |y) =
∫
Ωη

fΨ |Y (θ, η |y) dη

The fully probabilistic structure of Bayesian inference opens up other possibilities,

such as the posterior predictive distribution which provides the predictive distribution

for a future observation, y∗, from the same data generating process with all knowledge

and uncertainty in ψ taken into consideration:

fY ∗ |Y (y
∗ |y) =

∫
Ω

fY (y
∗;ψ) fΨ |Y (ψ |y) dψ (3.3)

Commonly, in a frequentist setting the predictive distribution would result from simply

substituting a point estimate: fY ∗ |Y (y
∗ |y) := fY (y

∗; ψ̂), which fails to account for

uncertainty in ψ̂. Although frequentist prediction intervals and predictive distributions

with correctly calibrated frequency probability properties can be found (Lawless and

Fredette, 2005), they do not appear to be used extensively by practitioners.

3.1.4 Hierarchical Bayesian models

The simple specification of likelihood and prior described thus far is often limiting

when trying to model complex real-world applications. A powerful modelling option

which sees natural expression in a Bayesian framework for analysis is the ‘hierarchical

model’.

Recall that the parameters of the probability model for the data generating process

fY (·;ψ) are formally considered to be the realisation, ψ, of a random variable, Ψ. The

posterior then expresses the distribution of the value of the particular realisation ψ

which resulted in the data under examination. Consider instead multiple realisations

of the parameters, ψi, leading to different groups in the data (one group yi1, . . . , yini

for each realisation of the parameters). The basic Bayesian concept can be extended

by placing additional ‘hyper’-priors on the parameters of fΨ(·). Thus, the distribution

of the multiple ψi is estimated as part of the inferential procedure, through a hierarchy

of conditional probabilities as will now be clarified.

For example, consider data y = {y11, . . . , ymnm} where the first index indicates
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group membership. In specifying the model, define the following:

fY |Ψ(· |ψi) (3.4)

fΨ |Λ(· |λ) (3.5)

fΛ(·) (3.6)

(3.4) is the probability model for the data generating process of group i. Note that

the parametric family is the same, but the parameter for each group differs (as with

the discussion thus far, each ψi may be a vector of parameters). (3.5) is the prior

distribution of the parameters, with the hyperparameters made explicit as λ. Crucially,

λ is not specified directly, but has hyper-prior distribution (3.6). This full model

involves parameters ξ = (ψ1, . . . , ψn, λ), so that the posterior is now:

fΞ |Y (ξ |y) ∝ fY |Ξ(y | ξ) fΞ(ξ)

= fY (y;ψ) fΨ(ψ;λ) fΛ(λ)

The simplification of the first term to the usual likelihood is due to the conditional

independence of y and λ given ψ, and the joint prior decomposes naturally due to the

model formulation.

Commonly, interest will then be in the posterior predictive distribution of ψ, since

this incorporates all knowledge learned about that parameter from the observed data:

fΨ∗ |Y (ψ
∗ |y) =

∫
fΨ(ψ

∗;λ) fΛ |Y (λ |y) dλ (3.7)

The above example is the simplest possible hierarchical model, but the principle

extends easily to highly complex dependencies, most easily depicted through directed

acyclic graphs which make identification of conditional dependencies and independen-

cies easier.

3.1.5 Exchangeability

Rather brushed over in the above discussion are what assumptions are made in relation

to the observed data. The usual starting point in a frequentist analysis is the assump-

tion that the observations are independent and identically distributed (i.i.d.), leading

to the simplification in likelihood: fY (y;ψ) =
∏n

i=1 fY (yi;ψ). Although it is not un-

usual to see this strong assumption made in simple Bayesian analysis, de Finetti (1974)
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emphasised development of Bayesian techniques relying only on the weaker assumption

of ‘exchangeability’.

Definition 3.1 (Exchangeability) A sequence of observations y1, . . . , yn is consid-

ered exchangeable if the joint distribution is unaffected by any permutation of the

indices:

FY1,...,Yn(y1, . . . , yn) ≡ FY1,...,Yn(yσ(1), . . . , yσ(n))

Note that i.i.d. =⇒ exchangeable, but not vice-versa, meaning that exchangeability

covers a wider class of models. An example of an exchangeable sequence which is not

i.i.d. is a sequence resulting from simple random sampling without replacement.

In practice, a simple non-hierarchical Bayesian analysis models the observations

from an exchangeable distribution as being i.i.d. given the parameter(s) ψ. The real

usefulness of exchangeability is apparent in hierarchical models, where one considers

exchangeability at each level of the hierarchy, conditional on the parameters of the

higher level. This leads to a mixture of i.i.d. distributions representing the exchangeable

distribution. For example, the exchangeable distribution of ψ = (ψ1, . . . , ψn) from

§3.1.4 is:

fΨ(ψ) =

∫
Ωλ

{
n∏
i=1

fΨ |Λ(ψi |λ)

}
fΛ(dλ)

In most applications, such mixture of i.i.d. distributions is entirely adequate. This

nicely mirrors the theoretical result in de Finetti’s Theorem which proves every (infi-

nite) sequence of exchangeable Bernoulli random variables can be expressed in mixture

i.i.d. form.

3.1.6 Summary

This section has introduced some ideas relating to the Bayesian approach to inference.

A classic text for much more detailed background is Bernardo and Smith (2007). A

more hands-on introduction is offered in Gelman et al. (2004). Finally, Cox (2006)

compares and contrasts Bayesian theory with frequentist approaches.
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3.2 Markov chain Monte Carlo

The playfully dubbed ‘Monte Carlo’ idea of simulating random processes to learn about

a quantity of interest was first systematically developed in 1944 by researchers at Los

Alamos working on the atomic bomb during World War II (Hammersley and Hand-

scomb, 1964). Markov chain Monte Carlo followed quickly, the earliest published work

being the classic paper of Metropolis et al. (1953). However, it was a long time before

the ideas permeated the statistics community: despite Hastings (1970) generalising the

Metropolis algorithm in a statistics journal, it was only later after the Gibbs sampler

ideas from Tanner and Wong (1987) and Gelfand and Smith (1990) that it took-off and

saw wide spread adoption.

Before the advent of Markov chain Monte Carlo (MCMC), application of Bayesian

methods relied heavily on conjugacy results, non-informative priors and sophisticated

approaches to analytically evaluating posterior distributions. Looking at a respected

text such as Box and Tiao (1973) from the decade before MCMC gained traction in

statistical research, and then recent papers, reveals the real paradigm shift: the nature

and complexity of models which can be comfortably handled continues to grow and

the modern prominence of algorithmic over closed form solutions is conspicuous.

As already indicated, the challenges stem from evaluation of the normalising con-

stant in (3.2), which is often a sum or integral of very high dimension. Let

pu(ψ) = fY (y;ψ) fΨ(ψ)

be the un-normalised posterior density. Then pu(·) gives rise to a probability measure,

π(A) =

∫
A
pu(ψ) dψ∫

Ω
pu(ψ) dψ

which hereinafter is referred to as the ‘target distribution’. MCMC provides a means

of estimating expectations of functions g : Ω → R with respect to this measure:

Eπ[g(Ψ)] =

∫
g(ψ)π(dψ)

Given a sample from the target distribution, the idea behind expectation estimation

mirrors the well known standard Monte Carlo. The ‘Markov chain’ part of the nomen-

clature addresses producing the samples in difficult situations like Bayesian posterior

analysis.
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First, a quick recap of standard Monte Carlo provides motivation. The theory in

this section can be applied in many areas aside from posterior exploration, so this is

stressed by the presentation in terms of arbitrary random variables, X, and general

unnormalised density functions, pu(x).

3.2.1 Standard Monte Carlo

In standard Monte Carlo a sequence of random variables X1, X2, . . . which are inde-

pendent and identically distributed according to the target distribution are used to

compute estimates of µ = Eπ[g(X)]. Let σ2 = Varπ(g(X)). Then the strong law of

large numbers implies that the estimate:

µ̂n :=
1

n

n∑
i=1

g(Xi)

converges almost surely to µ. Moreover, if g ∈ L2(π) then the estimate is approxi-

mately Normally distributed µ̂n ≈ N(µ, n−1σ2), by the Central Limit Theorem, and

the estimator variance can be approximated well by the regular näıve estimate:

n−1σ̂2
n =

1

n2

n∑
i=1

(g(Xi)− µ̂n)
2

Thus, standard Monte Carlo provides an extremely simple framework for computing

estimates complete with some quantification of the uncertainty in the estimated value.

3.2.1.1 Generality of expectation

At this point it is apposite to recall the salient fact that once estimates of µ = EX [g(X)]

can be computed, it is then possible to compute an estimate of almost any quantity of

interest, due to the generality of expectations. For example:

FX(x) = P(X < x) =

∫ x

−∞
fX(du) =

∫ ∞

−∞
I(−∞,x)(u)fX(du) = EX [I(−∞,x)(X)]

where I(−∞,x)(·) is the indicator function:

IA(u) =

 0 if u /∈ A

1 if u ∈ A

Thus, entirely unsurprisingly, n−1
∑n

i=1 I(−∞,x)(Xi) is an estimate of the probability

that the random variable X is less than x. More importantly, standard Monte Carlo
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theory additionally provides insight into the uncertainty in the estimate: the distribu-

tion of the estimated probability is asymptotically Normal with approximate variance

n−2
∑n

i=1(I(−∞,x)(Xi)− µ̂n)
2.

Many quantities of interest, complete with uncertainty estimate, follow naturally

from this. For example, marginalised densities, predictive densities (see (3.3)), posterior

moments, quantiles and indeed almost any statement of probability can be expressed

as an integral in the form of an expectation.

3.2.1.2 Beyond standard Monte Carlo

Standard Monte Carlo theory only applies to independent draws from the target distri-

bution. However, it is possible to extend the methodology to non-independent draws:

the objective is to create a sequence (a Markov chain) of random variables X1, X2, . . .

whose distribution is the target distribution of interest, without making independent

and identically distributed draws directly from that target. Furthermore, equivalent

uncertainty estimates to those in standard Monte Carlo are required for these non-

independent samples.

3.2.2 (Discrete time) Markov chains

This subsection addresses the underlying theory of the ‘Markov chain’ part of MCMC:

what set-up enables one to draw (non-independent) samples from π(·) without sampling

it directly?

In §2.2.1 continuous-time Markov chains on a discrete state space were described,

albeit the bulk of the theory was omitted to maintain a clear connection to the subject

matter of reliability. The fundamental set-up here is similar, but there is no direct

subject matter link as such: the purpose of constructing the stochastic process at this

point is purely computational. In contrast to §2.2, the stochastic process is discretely

indexed (by N+) on the state space of the target distribution, Ω, which may be con-

tinuous and/or infinite.

The evolution of the discrete-time stochastic process from its initial state X1 and

through all subsequent steps is described by a Markov kernel:

P(Xn+1 ∈ A |Xn = x) = K(x,A) :=

∫
A

K(x, dy)

43



for allK-measurable subsets A ⊂ Ω, whereK(x, ·) is a probability measure on the space

Ω. If K(x, ·) is independent of the discrete time, n, it will result in a homogeneous

(Definition 2.11) and Markov (Definition 2.10) stochastic process called aMarkov chain.

Ultimately then, the object of the exercise is to construct a probability measure

K(x, ·) from which it is easy to sample for all x, but such that the resulting sequence

X1, X2, . . . is equal in distribution to the target distribution. Achieving this hinges

primarily on two concepts: stationarity and reversibility.

Definition 3.2 (Stationary distribution) A probability measure π(·) on Ω is said

to be the stationary distribution of a Markov chain with Markov kernel K(x, ·) if and

only if: ∫
K(x,A)π(dx) = π(A)

for all π-measurable subsets A ⊂ Ω.

Intuitively, if a Markov chain has stationary measure π(·) and X1 is distributed

according to π(·), then X2 (drawn from K(X1, ·)) will also be distributed as π(·).

Recursively, so will X3, X4, . . . . This is a very strong stability condition.

Definition 3.3 (Reversibility) A Markov chain with Markov kernel K(x, ·) is re-

versible with respect to a probability measure π(·) if and only if:

⟨Kf, g⟩ = ⟨f,Kg⟩∫∫
f(y)g(x)K(x, dy)π(dx) =

∫∫
g(y)f(x)K(x, dy)π(dx)

for all f, g ∈ L2(π).

Given an appropriate σ-finite reference measure µ(dx) on Ω (e.g. Lebesgue measure

for continuous target densities and counting measure for discrete), the Markov kernel

K can usually be written as a transition kernel K(x, dy) = k(x, y)µ(dy). Likewise

π(dx) has density function π(dx) = p(x)µ(dx). This allows a simpler definition which

it will be seen is a sufficient condition for reversibility (note that it is not necessary, so

cannot entirely supersede the definition of reversibility above):

Definition 3.4 (Detailed balance) A transition kernel k(x, ·) and probability den-

sity p(·) are said to satisfy detailed balance if the following equality holds:

p(x)k(x, y) = p(y)k(y, x) ∀ x, y ∈ Ω
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Detailed balance, reversibility and stationarity are then all linked by the following

crucial result.

Theorem 3.1 For some given measure, if a Markov chain with transition kernel k(x, ·)

and the probability density p(·) satisfy detailed balance, then:

1. the Markov chain is reversible with respect to π(·); and

2. π(·) is the stationary distribution of the Markov chain.

This important Theorem forms the heart of the majority of modern Markov chain

sampling strategies used in Bayesian inference. In summary, it states that finding a

Markov kernel which is in detailed balance with the target distribution is sufficient

to ensure the Markov chain is reversible and, consequently, the target distribution is

the stationary distribution. Therefore, each member of the sequence X2, X3, . . . is

distributed according to the target distribution whenever X1 is.

The last three words of that paragraph, ‘whenever X1 is’, can often be the crux

of using Markov chain sampling in practice and will be revisited in §3.2.4. For now,

blissful ignorance of this obstacle is assumed.

3.2.3 Markov chain sampling algorithms

The previous subsection has indicated the general course of action to finding a Markov

chain which may generate the necessary samples. The remarkable work of Metropolis

et al. (1953) (symmetric proposals) and later generalisation by Hastings (1970) pro-

vides a prescriptive means to constructing the necessary transition kernel. Chib and

Greenberg (1995) provide an accessible tutorial paper.

3.2.3.1 The Metropolis-Hastings algorithm

The objective is to sample from the probability measure π(·) which has un-normalised

density pu(·) (with respect to the appropriate σ-finite reference measure). The user

of the algorithm must essentially choose some proposal transition kernel q(x, ·), which

clearly will not necessarily be the requisite kernel to be reversible with π(·). A very

common choice for q(x, ·) in continuous settings of dimension ≥ 2 is the multivariate

Normal distribution.
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The Metropolis-Hastings kernel is then defined according to the following algorithm:

Algorithm 3.1 (Metropolis-Hastings kernel)

1. If the current state is x, then propose a new state move y from q(x, ·).

2. Compute the probability (termed the ‘acceptance ratio’):

α(x, y) = min

{
1,
pu(y)q(y, x)

pu(x)q(x, y)

}
3. With probability α(x, y) the next state is y and with probability 1−α(x, y) it is x

again. □

Thus, the transition kernel is:

k(x, y) = q(x, y)α(x, y) = q(x, y)min

{
1,
pu(y)q(y, x)

pu(x)q(x, y)

}
Remarkably, this transition kernel defined above via the proposal kernel is then

adequate:

Theorem 3.2 (Metropolis-Hastings) Given a probability measure π(·), having un-

normalised probability density pu(·), and a proposal kernel q(x, ·), the transition kernel

defined by Algorithm 3.1 results in a Markov chain whose stationary distribution is

π(·).

There are different flavours of Metropolis-Hastings, including:

Metropolis: where q(x, y) = q(y, x), leading to a simplified acceptance ratio.

Independence Metropolis-Hastings: where q(x, y) = q(y), so that the proposal

distribution is the same no matter the current state of the chain.

Random-walk Metropolis-Hastings: where q(x, y) is of the form x+ e where e is

random and independent of the current state (implemented in Geyer, 2010).

Thus, apart from the independence Metropolis-Hastings sampler, moves are made

locally with probability determined by the acceptance ratio. There is a trade-off in-

volved here when selecting a proposal distribution: if the resulting acceptance ratio
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tends to be high then moves are likely local and highly dependent, consequently explo-

ration of the posterior may be slow. On the other hand, if the acceptance ratio tends

to be low, then the chain may become ‘stuck’ and again exploration may be slow.

For example, Roberts et al. (1997) showed that the asymptotically optimal acceptance

ratio is 0.234 for a random-walk Metropolis algorithm, under quite general conditions.

The Metropolis-Hastings algorithm was the most general form of Markov chain

sampling technique up until Green (1995) who fully generalised it through a measure

theoretic treatment. Section 1.17 of Geyer (2011) is a nice review of this in its full

generality. The best known consequence is the ability to do so-called reversible jump

between models, thus incorporating model inference into the MCMC scheme.

3.2.3.2 The Gibbs sampler

The Gibbs sampler has origins in statistical physics and its first appearance in a more

traditional statistical application was Geman and Geman (1984). Tanner and Wong

(1987) introduced the idea for missing data problems, calling it ‘data augmentation’.

Gelfand and Smith (1990) marked the start of mainstream use of Gibbs sampling in

general Bayesian problems and shortly after Casella and George (1992) wrote a very

accessible tutorial paper.

The Gibbs sampler is actually a special case of the Metropolis-Hastings algorithm,

but there is a convention of explicitly describing it in the literature, because it involves

a particularly powerful simplification. Gibbs sampling makes use of the collection

of so-called ‘full conditional’ distributions of the target distribution. Given a target

p(x1, . . . , xn), the full conditionals are:

p(x1 |x(−1)) := p(x1 |x2, . . . , xn)

p(x2 |x(−2)) := p(x2 |x1, x3, . . . , xn)
...

p(xn |x(−n)) := p(xn |x1, . . . , xn−1)

Let X(i) = (X
(i)
1 , . . . , X

(i)
n ) denote the ith Markov chain random variate. Then, the

two main variants of Gibbs sampling are the systematic-scan Gibbs sampler and the

random-scan Gibbs sampler.
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Algorithm 3.2 (Systematic-scan Gibbs sampler) Initialise the chain with a fixed

x(0) = (x
(0)
1 , . . . , x

(0)
n ) and for i = 1, 2, . . . iterate:

1. Draw a sample x
(i)
1 from p(x1 |x(i−1)

2 , . . . , x
(i−1)
n )

...

j. Draw a sample x
(i)
j from p(xj |x(i)1 , . . . , x

(i)
j−1, x

(i−1)
j+1 , . . . , x

(i−1)
n )

...

n. Draw a sample x
(i)
n from p(xn |x(i)1 , . . . , x

(i)
n−1) □

Algorithm 3.3 (Random-scan Gibbs sampler) Again, initialise the chain with a

fixed x(0) = (x
(0)
1 , . . . , x

(0)
n ) and for i = 1, 2, . . . iterate:

1. Choose a component j to update uniformly from {1, . . . , n}

2. Draw a sample x
(i)
j from p(xj |x(i−1)

1 , . . . , x
(i−1)
j−1 , x

(i−1)
j+1 , . . . , x

(i−1)
n ), and

the remaining components are unchanged: x
(i)
k = x

(i−1)
k ∀ k ̸= j □

Algorithms 3.2 and 3.3 each define a transition kernel for a Markov chain, but it is

not immediately obvious that the stationary distribution for these chains is the target

distribution p(x). The significant Theorem which follows the next definition provides

the striking result that the full conditionals of a distribution completely define it and

gives the relevant decomposition.

Definition 3.5 (Positivity condition) Let (X1, . . . , Xn) be distributed according to

p(X) and let pi(xi) =
∫
···
∫
p(x1, . . . , xn) dx(−i) be the marginal distribution of the ith

component. If for all x = (x1, . . . , xn),

pi(xi) > 0 ∀ i ∈ {1, . . . , n} =⇒ p(x1, . . . , xn) > 0

holds, then p(·) is said to satisfy the positivity condition.

This positivity condition is somewhat restrictive in that it implies that the support

of the joint distribution is the Cartesian product of the supports of all the marginals.
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Theorem 3.3 (Hammersley-Clifford (Besag, 1974)) Any joint distribution, p(·),

which satisfies the positivity condition can be decomposed as:

p(x1, . . . , xn) ∝
n∏
i=1

p(xσ(i) | xσ(1), . . . , xσ(i−1), x
′
σ(i+1), . . . , x

′
σ(n))

p(x′σ(i) | xσ(1), . . . , xσ(i−1), x′σ(i+1), . . . , x
′
σ(n))

for all permutations σ on {1, . . . , n} and every x′ ∈ Ω, where the constant of propor-

tionality is p(x′1, . . . , x
′
n).

The Hammersley-Clifford Theorem makes it easy to see that a single component

update of the Gibbs sampler is in detailed balance with the target distribution when it

is written using this decomposition into full conditionals (with σ and x′ chosen appro-

priately). In fact, the random-scan Gibbs sampler is in detailed balance with the target

distribution for multiple updates. However, the systematic-scan is not guaranteed to

be in detailed balance, except in the 2 component case where there is component-wise

reversibility — joint reversibility is possible with an additional latent sampling step

(Robert and Casella, 2004, p.351).

The power of the Gibbs sampler is in its simplicity. In particular, note that the tar-

get distribution need not be known in closed form: thus a directed acyclic graph can be

used to specify a model and associated dependencies and then, due to the Hammersley-

Clifford Theorem, only having the full conditional distributions from each node is ade-

quate to proceed with an MCMC sampler without ever specifying (or knowing) the full

target distribution explicitly. The only proviso is that one needs to know that the joint

distribution exists: the Hammersley-Clifford Theorem provides the decomposition but

does not prove existence of a valid joint distribution.

The Gibbs sampler is, none-the-less, technically a special case of the Metropolis-

Hastings algorithm: the full conditionals are the proposal kernel for a single site up-

date leading to acceptance probability always equal to 1. However, it is still hugely

important because in principle the insights of the Hammersley-Clifford Theorem en-

able sampling from a multivariate density by performing only univariate sampling.

Indeed, in something of a misnomer, ‘Metropolis-Hastings within Gibbs’ is a common

strategy whereby a Gibbs scheme is used but the full conditionals are sampled via

a Metropolis-Hastings update. Also common is a so-called ‘blocked Gibbs’ whereby

many components are simultaneously updated conditional on the others.
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3.2.3.3 Data augmentation

The data augmentation algorithm (Tanner and Wong, 1987) is effectively just Gibbs

sampling, though it is given a separate name to emphasise the usefulness of Gibbs

samplers in missing data problems.

It may be that some target density of interest, p : Ω → [0,∞), is either prohibitively

complex or possibly cannot even be written in closed form. However, if there is a

function h : Ω× Ω′ → [0,∞) such that:∫
Ω′
h(x, y) dy = p(x)

and where simulation from both h(x | y) and h(y | x) is easy, then Gibbs sampling can

be employed using these two full conditionals. That is, the space Ω has been augmented

with Ω′ to facilitate sampling. Typically, Ω′ is some missing data whose reintroduction

through simulation causes an unmanageably complex problem to be simplified due

to the fact that Gibbs sampling ensures the resultant chain of x values is from the

marginal.

The main subtlety with regard to data augmentation versus general Gibbs sampling

is that although two components (X and Y ) are being sampled, interest is often only

in one. Thus, the transition kernel of interest is really

k(x, x′) = kY |X((x, y), (x, y
′)) kX |Y ((x, y

′), (x′, y′))

= h(y′ |x)h(x′ | y′)

rather than the joint update. This can have an impact on convergence results in §3.2.4

since focus on the X chain may prove convergence more easily than the joint chain.

Hobert (2011) is a detailed and accessible introduction to MCMC specifically from

the data augmentation viewpoint and contains the most recent research results from,

for example, parameter expanded data augmentation.

3.2.4 Convergence

As hinted at on page 45, although the above seems a complete and rosy picture at first

glance, it is only half the story. There are two key issues:

1. If it was possible to draw the first sample directly from the target distribution,
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presumably one would set about continuing to draw i.i.d. samples in that way

and perform standard Monte Carlo analysis!

2. The definition of stationarity (Definition 3.2) is slightly weaker than it might first

appear. Stationarity alone is not enough to ensure that the Markov chain will

produce successive draws from the target distribution when started in a single

fixed place. If this seems surprising, it may be clarified by the following neat

example, reproduced from Roberts and Rosenthal (2004) with notation modified.

Let Ω = {1, 2, 3} and take target mass function p(1) = p(2) = p(3) = 1
3
.

Consider the transition kernel k(1, 1) = k(1, 2) = k(2, 1) = k(2, 2) = 1
2

and k(3, 3) = 1. Then it is trivial to verify k(x, ·) is stationary with

respect to p(·). However, if X1 = 1, then Xn ∈ {1, 2} for all n, so

P(Xn = 3) = 0 for all n.

To make clear what it is that stationarity does guarantee, consider a collection of

chains. Let X i
j denote the jth draw from the ith chain. If {X i

1 : i = 1, . . . ,m} are

drawn from p(·), then stationarity guarantees that after j steps the set of random

variables {X i
j : i = 1, . . . ,m} is distributed as p(·),∀ j ≥ 2. Thus, stationarity

preserves the distribution of an initial collection of random variables as they are

evolved forward as distinct from ensuring that each chain, serially, is from the

target distribution.

These issues are normally addressed by an appeal to convergence. That is, if

Kn(x, ·) is the n-step Markov kernel:

Kn(x,A) := P(Xn+1 ∈ A |X1 = x)

=

∫
A

∫
· · ·
∫
K(x, dy1)K(y1, dy2) . . . K(yn−2, dyn−1)K(yn−1, dξ)

then the hope is that Kn(x,A)
a.s.→ π(A) as n → ∞ for arbitrary choice of starting

position x ∈ Ω.

There is a prodigious amount of literature on convergence of Markov chains, much

of it quite technical. The following is necessarily just a passing introduction.
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Definition 3.6 (Total variation distance) Given two probability measures on the

same space, π1(·) and π2(·), the total variation distance between them is:

∥π1(·)− π2(·)∥ = sup
A

|π1(A)− π2(A)|

where the supremum is over all π-measureable sets A.

Thus the objective is to ensure limn→∞ ∥Kn(x, ·) − π(·)∥ = 0 for all x ∈ Ω. This

is stronger than simply convergence to stationarity since it means that for all starting

points the chain would serially produce draws from π(·).

Definition 3.7 (ϕ-irreducibility) A Markov chain is ϕ-irreducible if there exists a

non-zero σ-finite reference measure ϕ on Ω such that ∃n,Kn(x,A) > 0 for all A ⊆ Ω

where ϕ(A) > 0.

This irreducibility requirement is what ensures pathological examples such as the

one above are excluded, so that the Markov chain is never partitioned in to one part

of the state space. One further requirement is needed

Definition 3.8 (Aperiodicity) A Markov chain is periodic if there exists a collection

of disjoint subsets Ω1, . . . ,Ωd ⊆ Ω, (d ≥ 2) such that K(x,Ωi+1) = 1 ∀ x ∈ Ωi(1 ≤ i <

d), and K(x,Ω1) = 1 ∀ x ∈ Ωd.

If no such collection exists, the Markov chain is said to be aperiodic.

In the setting here, aperiodicity is still considered to hold if the only collections are

such that π(Ωi) = 0 ∀ i.

If a Markov chain is both ϕ-irreducible and aperiodic then it is said to be ergodic.

Ergodicity ensures that for π-almost all starting points x ∈ Ω, limn→∞ ∥Kn(x, ·) −

π(·)∥ = 0. To ensure it for all starting places requires a stronger form of irreducibility:

Definition 3.9 (Harris recurrence) Let ηA be the number of passages a Markov

chain makes to the set A ⊆ Ω. Then, the Markov chain is Harris recurrent if it is

ϕ-irreducible and moreover P(ηA = ∞) = 1 for all A ⊆ Ω where ϕ(A) > 0.

If a Markov chain is ϕ-irreducible, aperiodic and Harris recurrent then it is said to

be Harris ergodic. Verifying Harris ergodicity can be awkward in many cases, but the

following Lemma provides a commonly satisfied sufficient condition:
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Lemma 3.4 Given a transition kernel k of some Markov kernel, the resulting Markov

chain is Harris ergodic if k(x, y) > 0 ∀ x, y ∈ Ω.

Once Harris ergodicity is confirmed, then the above statement is strengthened:

limn→∞ ∥Kn(x, ·) − π(·)∥ = 0, ∀x ∈ Ω. Indeed, the following Theorem which is a

Markov chain analogue of the strong law of large numbers then holds.

Theorem 3.5 (Ergodic Theorem) If a Markov chain on a state space with count-

ably generated1 σ-algebra is Harris ergodic and π(·) is stationary with respect to the

transition kernel k(x, ·), then for all g ∈ L1(π):

µ̂n :=
1

n

n∑
i=1

g(Xi)
a.s.→ Eπ[g(X)] as n→ ∞

This Theorem justifies using samples from a Markov chain to estimate expectations

with respect to the stationary measure when the chain is Harris ergodic.

The question this Theorem leaves unanswered is at what rate the convergence

occurs. The definition which must be satisfied to assure rapid convergence is as follows:

Definition 3.10 (Geometric ergodicity) A Markov chain is geometrically ergodic

if ∃ M : Ω → [0,∞) and ρ ∈ [0, 1) such that:

∥Kn(x, ·)− π(·)∥ ≤M(x)ρn

for all x ∈ Ω, n ∈ N+.

The literature on rapid convergence is expansive and so a detailed treatment of

geometric ergodicity and associated deeper results is well beyond the scope of this

overview. The book by Robert and Casella (2004) covers matters of convergence in

detail. Two particularly nice papers for orienting oneself in the literature are Jones

and Hobert (2001) and Roberts and Rosenthal (2004).

3.2.4.1 Markov chain Central Limit Theorem

The final element required to make MCMC a fully meritorious successor to the standard

Monte Carlo method for problems involving intractable direct simulation is quantifi-

cation of uncertainty in the estimates produced. Thus, just as Theorem 3.5 is the

1Note any finite or countable state space will satisfy this, as will the standard Borel σ-algebra on
Rn.
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analogue of the strong law of large numbers, there is also a Markov chain analogue

of the Central Limit Theorem. There are many versions of it, differing only in the

sufficient conditions they use, the first Theorem in Jones et al. (2006) providing a ref-

erenced list. One of the versions which can be stated with the definitions encountered

hereinbefore is:

Theorem 3.6 Take a geometrically Harris ergodic Markov chain with stationary dis-

tribution π(·) and let g : Ω → R, with g ∈ L2(π). Then, for any initial starting

state,
√
n(µ̂n − Eπ[g(X)])

d→ N(0, σ2
g)

as n→ ∞, where

σ2
g := Varπ(g(X1)) + 2

∞∑
i=2

Covπ(g(X1), g(Xi))

There is a notable jump in complexity compared to standard Monte Carlo: the

variance can no longer be computed by an easy näıve estimate. The work in Jones

et al. (2006) and accessible review in Flegal et al. (2008) provide details on estimating

σ2
g using batch means, which is implemented in Flegal and Hughes (2012). The ‘gold-

standard’ method of estimating the variance is via so-called regeneration techniques,

but these are often hard to find in practice, so the generally applicable batch means

approach is used in the sequel.

3.2.5 Implementing MCMC

Assuming that a (geometrically) Harris ergodic Markov chain can be chosen with the

target distribution as the stationary distribution, there remain some issues to address

in implementation. These include:

1. Having started the chain at some x ∈ Ω, how many iterations should be performed

before assuming convergence to the target has occurred?

2. How many iterations should be performed before calculating the estimated quan-

tities of interest?
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3.2.5.1 Burn-in

The answer to the first question is commonly called the burn-in. The idea is that

one runs the chain for some specified duration and then discards these once the chain

(subjectively or diagnostically) appears to be stochastically stationary — the final value

is then used as the starting point for the Markov chain samples which will actually be

used in the analysis.

It is not entirely uncontentious. Geyer (2011, p.20) observes: “Any point you don’t

mind having in a sample is a good starting point.” That is, any reasonable choice of

starting point which is not too far from stationarity obviates the need for extensive

burn-in. Thus, in a Bayesian inferential context, if one believes the prior choice to be

sensible then a random sample from the prior would be an acceptable starting point

without burn-in. Likewise, if the target distribution mode can be found before starting

an MCMC run using a numerical optimiser, then this would be a reasonable starting

point obviating any need for burn-in.

However, caution is certainly required. If the parameter space is high dimensional,

such choices may be difficult to make and at a minimum trace plots of parameter

samples should always be examined to ensure there is no discernible trend.

3.2.5.2 Run length

In the 1990s, the amount of thinning performed was intimately connected with answer-

ing the second question. Thinning is the practice of retaining only every mth iteration,

with m chosen to reduce the serial correlation (or autocorrelation) to near zero. This

was done in an effort to create the illusion of i.i.d. samples so that an appeal to the

standard Monte Carlo Central Limit Theorem could be made: the number of itera-

tions could then be chosen by deciding the desired standard error accuracy required

and computing the requisite n, then drawing nm MCMC samples and thinning.

It is mentioned because the practice is still widespread despite the advent of the

Markov chain Monte Carlo Central Limit Theorem (Theorem 3.6) toward the end of

the millennium, which obviates the need to do so. Geyer (2011, p.27) quotes Elizabeth

Thompson: “You don’t get a better answer by throwing away data.” Thus, an estimate

of the number of iterations required can be computed by appeal to Theorem 3.6. A

thinning style approach may be justified in the case that autocorrelation is so severe
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— and inflates the variance so much — that storing all the required iterations is

computationally infeasible.

3.2.5.3 Diagnostics

Hence, whilst burn-in may be necessary, thinning should be required less often. This

still leaves open the question of how to determine whether convergence has occurred.

Regrettably, there is no definitive means of answering this question because an MCMC

chain may make a sudden change 1 iteration beyond wherever one ceased. However,

there are certain diagnostic tests which, assuming any trend that will occur has started

to do so, will provide guidance as to whether the chain has converged.

There is a soupçon of irony that these tests tend to be based on frequentist methods,

given the heavy use of MCMC for Bayesian inference. Gelman and Rubin (1992) de-

veloped the Gelman-Rubin shrink factor (a form of ANOVA between multiple chains),

Heidelberger and Welch (1983) introduced Heidelberger and Welch’s convergence di-

agnostic (based on the Cramér-von-Mises test statistic), and Geweke (1992) presented

the Geweke statistic (performing a difference of means test on non-overlapping parts of

the chain). All these above tests can be applied with progressively increasing burn-in

sizes to gain insight into convergence of the chain.

3.2.6 Summary

This section has introduced Markov chain methods of sampling from intractable target

probability distributions. It also has briefly mentioned the convergence and asymptotic

results which enable a Monte Carlo usage of sequential draws of a Markov chain to

estimate expectations of functionals of that target distribution and their associated

uncertainty. There was a short explanation of the two most common implementation

concerns surrounding convergence and stopping rules.

The interested reader looking for more depth can follow some of the cited tutorial

and overview papers or should consult the seminal book Meyn and Tweedie (1993)

(recently updated in Meyn and Tweedie, 2009), or Robert and Casella (2004). Diaconis

(2009) is a nice review paper which includes interesting applications, and an excellent

reference is the recent collection of papers in Brooks et al. (2011).

56



3.3 Inference for Phase-type models

Phase-type distributions were introduced in §2.2.2, page 29. In their most general

form they comprise n2+n parameters, where n is the number of non-absorbing states.

Statistically, interest may lie in inferring these parameters given some data. As alluded

to on page 31, the data associated with Phase-type distributions may vary: it could

consist of details of the latent stochastic process, or it may consist only of the absorption

times (which correspond to masked system lifetime data in the reliability setting).

Concern in this thesis is with the latter scenario, so that observations y1, . . . , yN of

random variables Y1, . . . , YN are modelled as Yi
i.i.d.∼ PHT(π,G), with G comprised of

S and s as in (2.11), page 29. The exchangeable rather than i.i.d. setting is considered

later in Chapter 6.

There has already been fruitful work in the literature to perform inference on such

a model and data, including a maximum likelihood approach developed by Asmussen

et al. (1996) using the EM-algorithm (Dempster et al., 1977) and a fully Bayesian ap-

proach developed by Bladt et al. (2003) using Markov chain Monte Carlo. Both exploit

the ‘missing data’ connection to the unobserved latent process: Asmussen et al. (1996)

performs expectation-maximisation on the sufficient statistics of the latent process like-

lihood, and Bladt et al. (2003) simulate latent processes concordant with the data to

generate random samples of the same sufficient statistics.

3.3.1 Latent process likelihood

Consider the full latent process data, consisting of a separate process, ϕi, for each

observed absorption time, yi. For m observations there are thus m sets of latent

processes, each comprising: the starting state; sojourns in each state; and state moves

through to absorption. Then the likelihood function can be written:

fΦ(ϕ;π,S) =
n∏
i=1

πbii

n∏
i=1

exp{Siizi}
n∏
i=1

n∏
j=0
j ̸=i

S
Nij

ij (3.8)

where b, z and N are the sufficient statistics of ϕ with:

Si0 := si (recall Definition 2.15, page 29)

bi := the number of processes with starting state equal to i
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zi := the total time spent in state i across all processes

Nij := the total number of state moves i→ j across all processes

Ni0 := the total number of absorbing moves i→ n+ 1 across all processes

In summary: Asmussen et al. (1996) calculate b, z and N on the ‘E’ step (numeri-

cally, by Runge-Kutta methods) and update πi and Sij on the ‘M’ step; whereas Bladt

et al. (2003) use the current πi and Sij to simulate a latent process concordant with

yi, compute b, z and N and then use conjugacy results to update πi and Sij.

These are now discussed in detail for the remainder of this chapter.

3.3.2 The approach of Asmussen et al. (1996)

There are certain theoretical limitations of this approach. The first is that the maxi-

mum likelihood parameter estimates are point estimates, with no well defined estimate

of uncertainty. Indeed this is still a topic of active research, most recently addressed by

Bladt et al. (2011), who derived the Fisher information matrix to provide asymptotic

variances and covariances of the parameter estimates.

The second limitation is the fact that Phase-type distributions are heavily over pa-

rameterised. Specifically, a general Phase-type with n2+n parameters has an equivalent

parameterisation of dimension 2n−1 (Asmussen et al., 1996), resulting in severe prob-

lems of identifiability. The limitation is acknowledged in that work, but is justifiably

dismissed because the emphasis is not on the underlying process, rather on attendant

estimable quantities like the distribution, density and hazard rate. However, in light

of the subject-matter connection of Chapter 2, it is something of major relevance in

this work.

Numerous elementary examples were explored by the author to determine the grav-

ity of the problem and the following highlights the issue. 100 observations were simu-

lated from the Phase-type distribution with parameters:

π =


1

0

0

 and S =


−3.6 1.8 1.8

9.5 −11.3 0

9.5 0 −11.3


This represents the (repairable) two component parallel system example in (2.10), page

29, with λf = 1.8 and λr = 9.5. The EM-algorithm was executed using the EMPHT
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software (Häggström et al., 1992). The first run resulted in maximum likelihood fit:

Ŝ =


−0.7 0.3 0.4

0.1 −0.7 0

2.9 0 −17.3

 with l(Ŝ;x) = −189.4

Repeating the fit without any changes produced maximum likelihood fit:

Ŝ =


−16.7 8.3 8.4

0.1 −0.7 0

1.0 0 −1.1

 with l(Ŝ;x) = −189.4

These two runs of the EM-algorithm resulted in the same log-likelihood values to 4

significant figures, but markedly different estimates. The combination of identifiability

issues and the well-known problems the EM-algorithm has with local maxima creates

significant difficulties.

These limitations lead one to conclude that in the use-case where the latent pro-

cess — and thus parameter estimates — are of direct interest, this may not be an

appropriate avenue to pursue.

3.3.3 The approach of Bladt et al. (2003)

The Bayesian method holds the prospect of addressing both of these limitations.

Firstly, Bayesian inference provides natural uncertainty estimates because the pos-

terior distribution articulates all knowledge of the parameters in light of the data (see

§3.1).

Furthermore, the ability to specify a prior distribution should assist with regular-

ising the inference, dampening modes of the likelihood in parts of the parameter space

which would certainly be known a priori to be implausible. For example, the sec-

ond maximum likelihood estimate above can immediately be seen to be implausible,

because the failure rate is an order of magnitude larger than the repair rate. Even

relatively dispersed priors for failure and repair rates with small overlapping measure

would prevent the above mode from dominating.

Consideration of the above points — and, candidly, the Bayesian predilection of

the author — motivated this route early in the research programme. Consequently,

the full detail of only this method is reviewed here.
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3.3.3.1 The methodology

The ‘full data’ likelihood representation in (3.8) is natural, because it is a multiparam-

eter curved Exponential family. However, it can be re-written as:

fΦ(ϕ;π,G) =
n∏
i=1

πbii

n∏
i=1

sNi0
i exp{−sizi}

n∏
i=1

n∏
j=1
j ̸=i

S
Nij

ij exp{−Sijzi} (3.9)

since Gii = −
∑

j ̸=iGij. This form makes explicit a product of n2 unnormalised Gamma

distributions and an unnormalised Dirichlet distribution. Consequently, if independent

priors for each parameter are used then in product with this likelihood the following

conjugacy results hold:

si ∼ Gamma(νi0, 1/ζi)

Sij ∼ Gamma(νij, 1/ζi)

π ∼ Dir(β1, . . . , βn)

 =⇒


si |ϕ ∼ Gamma(Ni0 + νi0, 1/(ζi + zi))

Sij |ϕ ∼ Gamma(Nij + νij, 1/(ζi + zi))

π |ϕ ∼ Dir(β + b)

(3.10)

where νij are shape, ζi are reciprocal scale and βi are concentration hyperparameters,

with N, z and b being sufficient statistics of ϕ.

However, recall that the latent processes are in fact unobserved. Thus, a data

augmentation scheme (§3.2.3.3) is used to sample the latent processes conditional on

the parameters and vice versa. If Ψ is the random variable representing the parameters

of interest and Φ is the random variable for the collection of latent processes, then the

full conditionals are fΨ |Φ(π,G |ϕ,y) and fΦ |Ψ(ϕ |π,G,y). Due to the Hammersley-

Clifford Theorem, these fully define the joint posterior so that data augmented Gibbs

sampling will result in samples from fΨ,Φ(π,G,ϕ |y).

Sampling fΨ |Φ(π,G |ϕ,y) is straightforward due to the conjugacy results eluci-

dated above. Sampling fΦ |Ψ(ϕ |π,G,y) is rather more involved: this requires sam-

pling a latent process ϕi such that it absorbs at precisely time yi when started in state

j with probability πj and evolved in time according to the continuous-time Markov

chain with generator G.

3.3.3.2 Simulating from fΦ |Ψ(ϕi |π,G, Yi = yi)

Simulation of an individual absorbing continuous-time Markov chain for given π,G

is a straightforward exercise: Algorithm 2.1 (page 27) can be used, with the minor

60



refinement that simulation plainly only terminates once the process enters state n+ 1

(where it remains in perpetuity).

In order to sample conditional upon an absorption time, Bladt et al. (2003) propose

a Metropolis-Hastings algorithm (§3.2.3.1). First, rejection sampling is used to generate

a realisation of the latent process ϕi from fΦ |Ψ(ϕi |π,G, Yi ≥ yi) — that is, repeatedly

simulate using the refined Algorithm 2.1 until a simulation is obtained whose absorbing

move occurs beyond time yi. This sample latent process is then modified by truncating

at time yi with a move to absorption. More precisely, the process is kept intact up to

yi (ϕ
[0,yi)
i is unchanged), and then the forced change ϕ

[yi,∞)
i = n+ 1 is made.

The procedure in the preceding paragraph acts as a proposal distribution, q(x, ·),

in the Metropolis-Hastings algorithm. Note that in fact this is an independence

Metropolis-Hastings algorithm (page 46).

A crucial simplification comes from noting that, due to the strong Markov property

(Theorem 2.7) of the continuous-time Markov chain ϕi, the following equality holds:

fΦ |Ψ

(
ϕ
[0,yi)
i |π,G, Yi ≥ yi, ϕ

{y−i }
i

)
= fΦ |Ψ

(
ϕ
[0,yi)
i |π,G, Yi = yi, ϕ

{y−i }
i

)
where y−i indicates the instant before time yi. That is, the distribution of the process

up to time yi is conditionally independent of the absorption time, given knowledge

of the state immediately prior to absorption. The consequence of this is a dramatic

simplification of the acceptance ratio. If ϕi is the current process and ϕ
′
i is the proposal

process, and suppressing conditioning on π andG (present in all densities) for legibility:

α(ϕi, ϕ
′
i) =

fΦ |Ψ (ϕ′
i |Yi = yi) fΦ |Ψ (ϕi |Yi ≥ yi)

fΦ |Ψ (ϕi |Yi = yi) fΦ |Ψ (ϕ′
i |Yi ≥ yi)

=
fΦ |Ψ

(
ϕ′
i |Yi = yi, ϕ

′{y−i }
i

)
fΦ |Ψ

(
ϕ
′{y−i }
i |Yi = yi

)
fΦ |Ψ

(
ϕi |Yi = yi, ϕ

{y−i }
i

)
fΦ |Ψ

(
ϕ
{y−i }
i |Yi = yi

)
×

fΦ |Ψ

(
ϕi |Yi ≥ yi, ϕ

{y−i }
i

)
fΦ |Ψ

(
ϕ
{y−i }
i |Yi ≥ yi

)
fΦ |Ψ

(
ϕ′
i |Yi ≥ yi, ϕ

′{y−i }
i

)
fΦ |Ψ

(
ϕ
′{y−i }
i |Yi ≥ yi

)
=
fΦ |Ψ

(
ϕ
′{y−i }
i |Yi = yi

)
fΦ |Ψ

(
ϕ
{y−i }
i |Yi ≥ yi

)
fΦ |Ψ

(
ϕ
{y−i }
i |Yi = yi

)
fΦ |Ψ

(
ϕ
′{y−i }
i |Yi ≥ yi

)

Hence, the acceptance ratio involves only the state of the current and proposal

processes at immediately pre-absorption time and does not involve the entire path of
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the process. After some routine probability and algebra, Bladt et al. (2003) show the

acceptance ratio simplifies to:

α(ϕi, ϕ
′
i) =

sk
sl

where k = ϕ
′{y−i }
i and l = ϕ

{y−i }
i

In other words, the acceptance ratio is simply the ratio of absorbing move rates from

the pre-absorption states of the proposal process to the current process.

After many steps of this independence Metropolis-Hastings algorithm, the final

process may be taken as a sample from the target distribution fΦ |Ψ(ϕi |π,G, Yi = yi).

The chain itself is not needed, simply the sufficient statistics N, z and b, which are then

aggregated over all simulated processes ϕi and used in sampling updated parameter

values.

3.3.3.3 Summary

The methodology of Bladt et al. (2003) provides a scheme for performing Bayesian

inference on absorption time data in Phase-type models, using Gamma and Dirichlet

prior distributions. The method is a data augmentation Gibbs sampler:

f� | (� |⇡,G,y)

f |�(⇡,G |�,y)

where the top full conditional relies on conjugacy results and the bottom full conditional

is sampled via an independence Metropolis-Hastings algorithm with rejection sampled

proposal.

The next chapter engages in a detailed study of the method and as a consequence

presents several contributions which extend it, both in model reformulation and com-

putationally.
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Chapter 4

MCMC for Phase-type Models

The Markov chain Monte Carlo algorithm provided in Bladt et al. (2003) enables

Bayesian inference to be performed on Phase-type models with dense generator ma-

trices. There are certain difficulties which may not be immediately apparent and the

assumption of fully dense generator matrices is a limitation which affects the efficacy

of the parameter inference in the subject matter context of Chapter 2.

This chapter commences with the minor contribution of a detailed study of the

algorithm, including exact conditions for convergence of the latent process simulation

for a certain class of model. It continues with three of the major contributions of the

thesis: model reformulation to enable structured generator matrices; computational

improvements to the latent process simulation; and incorporation of censored data

including computational aspects. The chapter concludes with a comparison of the

original and extended methodologies, and draws the theory together into a realistic

simulated reliability application performing inference on a repairable five component

system with masked system lifetime data.

4.1 A study of the original methodology

It is important to note that in their work, Bladt et al. (2003) are focused on estimable

quantities like the distribution, density and hazard rate which may have generated the

observed data, making the Phase-type distribution a germane choice: it is theoretically

dense in the space of all distributions on [0,∞) (Asmussen, 2000). In that setting, the

algorithm they proposed works very well. Thus, the critique here is specifically in
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relation to using that work in a way that was not originally envisioned, which leads

to some of the contributions of this thesis. Any reader without a direct interest in the

latent process and associated parameters may find only the computational advances

of particular interest, since issues such as identifiability do not necessarily affect some

other inferences of interest, such as prediction.

4.1.1 The model set-up

A key feature of the model is the assumption of a dense generator matrix. That is, a

generator matrix G whose sub-generator S and vector of exit rates s (see (2.11), page

29) have distinct non-zero parameters in every (off-diagonal) element. This is a feature

which may not be desirable when using the Phase-type representation for scientific

modelling of a specific process about which there is some domain knowledge. There

are at least two kinds of structure it may be desirable to impose on the generator:

prohibited and equivalent state moves.

4.1.1.1 Prohibited transitions

The simplest example of the inflexibility of an assumed dense generator for scientific

modelling is that of impossible state transitions. There may be a subject-matter reason

to know a priori that the process under investigation could not possibly make direct

moves between two states without doing so via another state.

Taking the example of reliability modelling which is of interest in this thesis, this

would represent moves between varying levels of operational state which may be theo-

retically impossible. For example, as noted on page 22, in the (repairable) two compo-

nent parallel system example in (2.10), page 29, a state transition 2 → 3 is impossible

since it represents repair of one component at precisely the same instant as failure of

the other. This is an event of probability measure zero in continuous time1.

4.1.1.2 Equivalent transitions

The other example of inflexibility in the model assumptions relates to entirely distinct

parameters in the dense generator. Once more, there may be subject-matter knowledge

1There is the concept of ‘uncovered failure’ in reliability theory, whereby the redundancy or fail-
over mechanism itself fails, which would manifest as a simultaneous occurrence of continuous time
events. This is not a situation considered here.
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about the process under investigation, in this case indicating that certain state moves

should be treated as (distributionally) the same, up to a constant multiple. Failure

to express this in the model leads to a superfluous inflation in the dimension of the

parameter space.

Turning specifically to reliability theory, this may arise through the common mod-

elling assumption of independent and identically distributed components. Again, tak-

ing the (repairable) two component parallel system example in (2.10), page 29, certain

state transitions should (in an idealised modelling sense) have identical parameters. In

particular, state transitions 2 → 1 and 3 → 1 should be modelled with the the same

rate since there is no reason to believe a distributional difference in the rate of repair

for each component. Moreover, with only ultimate system failure time available, often

any such difference is in fact unidentifiable. This desirable modelling assumption would

allow a significant reduction in the dimension of the parameter space.

4.1.1.3 Scope of the issue

Whilst there seems to be a logical cause for concern about the assumptions made in

relation to the generator matrix, it is prudent to at least briefly examine whether these

potential drawbacks actually manifest in a way which is detrimental to the inferential

conclusions, before perhaps prematurely pursuing a resolution. One informal way to do

this is to infer back to some known ground truth which was used to produce simulated

data.

Taking as ground truth the generator which represents the (repairable) two com-

ponent parallel system example in (2.10), page 29, with λf = 1.8 and λr = 9.5:

G =


−3.6 1.8 1.8 0

9.5 −11.3 0 1.8

9.5 0 −11.3 1.8

0 0 0 0


25 absorption times were simulated. Then, the algorithm of Bladt et al. (2003) was run

for 10, 000 iterations, chosen to bring the 95% quantile standard errors down sufficiently

to give two to three significant digits. The priors used were as per the formulation in
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Figure 4.1: Boxplot for posterior simulations from known ground truth using Bladt

et al. (2003). Solid vertical lines show ground truth values.

(3.10), page 60, with:

νij = 24 for (i, j) ∈ {(1, 2), (1, 3), (2, 0), (3, 0)}

νij = 180 for (i, j) ∈ {(2, 1), (3, 1)}

νij = 1 for (i, j) ∈ {(2, 3), (3, 2), (1, 0)}

ζi = 16 ∀ i

Table 4.1 shows the resultant summary estimates, with MCMC standard errors

calculated as discussed at the end of §3.2.4. Posterior sample box plots are shown in

Figure 4.1.

The most striking positive note from these results is that almost all the posterior

estimates of generator entries which should be equal are equal within sampling error.

However, even in this toy example the posterior for λr does not include the ground
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Ground
Parameter Expectation

Lower Upper

Truth 95% quantile 95% quantile

λf = 1.8

S12

1.57 1.02 2.21

( 0.00761 ) ( 0.0107 ) ( 0.015 )

S13

1.57 1.02 2.26

( 0.00894 ) ( 0.00956 ) ( 0.0184 )

s2
1.57 1.02 2.21

( 0.00386 ) ( 0.00658 ) ( 0.0111 )

s3
1.57 1.03 2.22

( 0.00387 ) ( 0.0066 ) ( 0.00969 )

λr = 9.5

S21

11.2 9.65 12.9

( 0.0107 ) ( 0.0199 ) ( 0.0292 )

S31

11.2 9.63 12.9

( 0.0113 ) ( 0.0192 ) ( 0.0266 )

prohibited, 0

S23

0.0632 0.00163 0.229

( 0.000816 ) ( 0.000185 ) ( 0.00476 )

S32

0.0636 0.00149 0.24

( 0.000922 ) ( 0.000195 ) ( 0.00531 )

s1
0.0919 0.00381 0.251

( 0.00182 ) ( 0.000509 ) ( 0.00361 )

Table 4.1: Posterior summary statistics for simulations from known ground truth

using Bladt et al. (2003). Bracketed figures are MCMC standard errors.
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truth in the central 95% quantile. Additionally, there is a relatively extended right tail

for those entries which should in fact be zero, despite quite a strong prior weight toward

zero on those parameters — this was done because this scenario assumes knowledge

of the structure and in the absence of model reformulation a practitioner would place

strong prior weight to zero.

The conjecture toward the end of the last chapter that this Bayesian approach

would render substantially better results than the frequentist EM-algorithm seems to

hold here. However, these results, inferring against a known ground truth, appear to

leave the door open to possible further improvement if the model can be reformulated

to make use of knowledge about the mechanism which generates the process.

4.1.2 Censored data

It is not uncommon for the kind of data which are available in a reliability analysis to

include substantial quantities of right-censored observations. There was no discussion

in Bladt et al. (2003) of censored observations and, as such, no means of accommodating

data sets which include them. As already reviewed in §2.1.2, simply ignoring such

observations is not an acceptable solution and so adapting the methodology to enable

their incorporation is an important contribution.

4.1.3 Computational performance

Nothing in the original Metropolis-Hastings algorithm for sampling continuous-time

Markov chains conditional on an exact absorption time was contingent on a dense

generator. Therefore, any model reformulation which facilitated structured generator

matrices would, in principle, require no change to simulation of the latent process.

However, there are some existing performance problems and, if structured generators

are to be accommodated, then in certain circumstances this leads to additional severe

degradation in the computational tractability. This is now discussed in problems I, II

and III below.

68



4.1.3.1 I. Exploration of parameter space

By nature, an MCMC sampling scheme should explore all parts of the parameter space

with non-negligible posterior probability. Thus, the Gibbs sampler will explore the

space of (π,G), sometimes making moves toward areas of lower posterior density, for

which the Metropolis-Hastings step must then simulate a latent process. However,

the rejection sampling approach can encounter problems for some regions of these low

posterior density samples.

Consider the acceptance probability for the rejection sampler. The rejection sampler

is merely forward simulating an absorbing continuous-time Markov chain, rejecting

sample processes that do not reach the observation time, yi, before absorbing. Hence,

the acceptance probability is simply P(Yi > yi |π,G). Therefore, the distribution of

the number of trials required to draw a suitably long simulated chain is Geometric,

with success probability parameter p = πT exp{yiS}e

Consequently, if (π,G) is in a region of Ω where p is small for some given yi, then

the rejection sampler can completely stall because it is so unlikely that any chain will

be produced which absorbs so far into the tail. For example, if K is the number of

rejection samples required to produce a proposal sample process, then:

P(Yi > yi |π,G) = 0.001 =⇒ E(K) = 1000, 95% CI = [25, 3687]

P(Yi > yi |π,G) = 10−6 =⇒ E(K) = 1000000, 95% CI = [25317, 3688877]

Hence, chains are wastefully sampled, potentially millions of times, to find one chain

absorbing beyond yi. One should bear in mind that:

i. The Metropolis-Hastings algorithm is run on every iteration of the data augmented

Gibbs algorithm.

ii. Each time, it must generate a latent process for every observation, yi, in the data.

iii. Each such Metropolis-Hastings run may involve many iterations before converging

to the stationary target distribution (that is, a process absorbing at precisely yi).

iv. Each such iteration involves producing a rejection sampled proposal.

It becomes quickly apparent that even modestly small p can lead to reduced com-

putational tractability due to the amplifying effects listed above. Diffuse priors can

further exacerbate this.
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This first problem exists whether any model reformulation away from dense gener-

ators is performed or not.

4.1.3.2 II. Zero constraints for absorbing moves

This problem would only occur under a model reformulation which facilitated struc-

tured generators as discussed in §4.1.1, so does not affect the original methodology.

The acceptance probability in the Metropolis-Hastings algorithm enables truncated

samples from fΦ |Ψ(ϕi |π,G, Yi > yi) to be used to generate samples which are concor-

dant with the observed absorption times, from fΦ |Ψ(ϕi |π,G, Yi = yi). The truncation

of proposal processes needs to be handled with care once there is the possibility that

some of the rates of moves to absorption, si, may be zero. There is the possibility that

truncating a rejection sampled chain will produce an impossible move: if sj = 0 is a

constraint, for some j, and the rejection sample is such that ϕ
{yi}
i = j, then truncating

and inserting a move j → n + 1 — that is, forcing ϕ
[yi,∞)
i = n + 1 — will result in a

sample of the latent process ϕi which is invalid and must be discarded.

The severity of this problem can be acute if the states most commonly occupied by

the process are those from which absorbing moves are disallowed. Take the (repairable)

two component parallel system example in (2.10), page 29: in such a system comprising

of reliable components, full operation is the state in which the process spends almost

all the time (i.e. state 1). In an idealised modelling sense this is the state from which

a direct absorbing move (failure) is impossible. Indeed, if λf is several orders of mag-

nitude smaller than λr — as would be expected in such a system — the intractability

becomes grave. The probability mass function of the state the process will occupy

where truncation occurs can be computed directly:

P
(
ϕ
{yi}
i = j |Yi > yi

)
=
πT exp{yiS}ej
πT exp{yiS}e

An example of what this means for the (repairable) two component parallel system

example can be seen in Table 4.2.

Clearly, when dealing with simulating the latent process for highly reliable systems

there will be a large number of unusable simulations produced by rejection sampling.

Again, the number of simulations required will be Geometrically distributed. The
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State, j Meaning P(ϕ{yi}
i = j |Yi > yi)

1 both working 0.9980

2 1 failed, 2 working 0.0010

3 1 working, 2 failed 0.0010

Table 4.2: Example probability mass function of latent process state at time yi = 500,

for λf = 1, λr = 1000 in the (repairable) two component parallel system.

example in Table 4.2 will have p = 1− 0.9980 = 0.002 meaning:

E(# unusable rej. samp.) = 500 and 95% CI = [12, 1872]

This second problem can compound with and amplify the first even further. In

testing, the algorithm has been observed effectively stalling for days of computation

time on a single MCMC iteration in only mildly pathological examples.

4.1.3.3 III. Convergence of process samples to stationarity

The Metropolis-Hastings algorithm can take time to converge to stationarity. That is,

the sequence of truncated sample processes proposed takes time to reach the target

of processes absorbed at an exact time, as discussed in §3.2.4. Interestingly, in this

situation it is more straightforward than usual when implementing Metropolis-Hastings

to analyse the time taken to reach stationarity analytically. The novel Theorem proved

here seems to proffer good news on at least one front and in particular indicates a

possible course of action.

To be specific, an easy case to examine (although the ideas here can be corre-

spondingly used numerically in any case) is when there are only two states from which

absorption can occur. This could be the (repairable) two component parallel system

example, or indeed for any n + 1-state latent space where only two si are non-zero.

Both the statement and proof of the following Theorem are contributions of this thesis.

Theorem 4.1 Let G be the generator of a continuous-time Markov chain with an

absorbing state, taken without loss of generality to be in the form (2.11), page 29. Let

η be the discrete probability mass vector of states occupied by valid proposal processes

at the truncation time y,

ηi = P(ϕ{y} = i |π,G, Y ≥ y, si ̸= 0)
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If sj ̸= 0 for precisely two j, which may be taken as s1 and s2 without loss of generality,

then the Metropolis-Hastings algorithm for sampling the latent process conditional on

an absorbing move occurring at time Y = y in Bladt et al. (2003) is geometrically

ergodic with rate of convergence:

1− η1

(
min

{
1,
s1
s2

})
− η2

(
min

{
1,
s2
s1

})
Proof: Recall that here, the Metropolis-Hastings algorithm takes proposal processes

which absorb beyond an observation time y and through the acceptance ratio turns

these into processes conditional on absorption at precisely time y by ensuring the cor-

rect proportion of immediate pre-absorption states. Due to the strong Markov property

(Theorem 2.7, page 23) this can be properly thought of as a Metropolis-Hastings al-

gorithm on the discrete space of immediate pre-absorption states. Furthermore, that

distribution of states immediately before absorption (at y) can be explicitly derived for

both proposal and target distributions.

Since the generator under consideration has si = 0 ∀ i /∈ {1, 2}, all valid rejection

sampled proposal processes ϕ will be in state 1 or 2 at time y. Denote by ρi (i = 1, 2)

the target distribution of these two states immediately before absorption:

ρi = P(ϕ{y−} = i |π,G, Y = y) ∝ πT exp{yS}eisi

where y− indicates the instant before time y. As per the Theorem statement, let ηi

denote the probability that a valid (in the sense that truncation at y does not create

an invalid process) rejection sample has pre-absorbing state i:

ηi = P(ϕ{y−} = i |π,G, Y ≥ y, si ̸= 0) ∝ πT exp{yS}ei

Note that ηi is non-zero only for i = 1 and i = 2. Then, the Metropolis-Hastings

algorithm, viewed through the lens of the immediately pre-absorption state, induces

a two state discrete time Markov chain, with initial probability vector (η1, η2) and

irreducible stochastic transition matrix:

P =


η1 + η2(1−min{1, s2

s1
}) η2(min{1, s2

s1
})

η1(min{1, s1
s2
}) η2 + η1(1−min{1, s1

s2
})
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It is not hard to see that this induced Markov chain is ϕ-irreducible for the counting

measure and aperiodic. Therefore, since the state space is finite, the induced Markov

chain will be ergodic (in fact, geometrically ergodic).

As noted in Diaconis (1996), for discrete probability masses the total variation

distance has an easy form for computation:

∥π1 − π2∥ = sup
A⊆Ω

{|π1(A)− π2(A)|} =
1

2

∑
x∈Ω

|π1(x)− π2(x)|

This leads to the total variation distance from stationarity after k steps of the

Metropolis-Hastings algorithm:

1

2

∣∣ηTPk − ρT
∣∣ e

where ηTPk k→∞−→ ρT. Clearly, the second eigenvalue of P determines the rate of

convergence (since the first eigenvalue is λ1 = 1 by the Perron-Frobenius Theorem).

The second eigenvalue of P is λ2 = 1− η1(min{1, s1
s2
})− η2(min{1, s2

s1
}), which may be

seen by solving the characteristic equation of P, that is: det(P − λI) = 0 (Roman,

2008, p.186). Consequently, the total variation distance from chain to target is o(λn2 ),

meaning the chain is geometrically ergodic with rate of convergence λ2. □

If the objective was to explore the sample space of each latent process (say to

learn about some functional of the process), then the geometrically ergodic conver-

gence would be enough. However, the actual usage of the algorithm as part of a data

augmentation scheme means that interest is only in producing a single sample. Conse-

quently, although geometric ergodicity reassures one that convergence can be achieved

quickly, this may not be adequate: if each iteration involves much work then anything

more than a few iterations to produce just one sample process may be prohibitive,

especially in light of the amplifying affect of problems I and II in producing rejection

sampled proposals.

Since the rate of convergence is known explicitly, the circumstances in which this

will occur can be easily seen, as follows.

Corollary 4.2 Under the conditions of Theorem 4.1, convergence of the Metropolis-

Hastings algorithm to simulate the latent process in Bladt et al. (2003) will require

many steps if both η1(min{1, s1
s2
}) and η2(min{1, s2

s1
}) are small. This occurs if s1 and

s2 are orders of magnitude different and ηi is small for the larger si.
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Even with small generator matrices, this has been observed causing many iterations

to be required to reduce the total variation distance to a negligible size.

It is interesting to note that the proof of the Theorem does point to a possible route

forward: the fact the Metropolis-Hastings algorithm induces a two state chain whose

target distribution can be computed means that one alternative would be to rejection

sample the chains from this distribution. Of course, the thought of a rejection sampler

within a rejection sampler does induce a feeling of foreboding. However, the realisa-

tion proved useful in a different guise when the explicit use of this target distribution

provided the penultimate solution proposed to this computational problem (see §4.2.2,

pilot solutions).

By way of an example, consider that the following generator has been produced by

the data augmented Gibbs step and that the Metropolis-Hastings algorithm is being

called upon to generate a latent process sample which absorbs at y = 600, with πT =

(1, 0, 0).

G =


−2 0.01 1.99 0

1 −300 0 299

299 0 −300 1

0 0 0 0

 (4.1)

This satisfies the conditions of Corollary 4.2 and indeed not at all pathologically so.

The ratio of exit rates is s2 = 299 : 1 = s3 — so around two orders of magnitude

difference — and in this case:

η2 ∝ π exp{400S}e2 =⇒ η2 = 0.6004

η3 ∝ π exp{400S}e3 =⇒ η3 = 0.3996

so that η2 could hardly be described as very small. Yet, even in this non-pathological

case the total variation distance after k iterations can be plotted as in Figure 4.2. The

total variation distance reaches around 5% at approximately 300 iterations. This is

a non-pathological example and 300 Metropolis-Hastings iterations seems a modest

requirement. However, tracing this example back through problems I and II highlights

the compounding which can occur. Let p be the probability of a successful rejection
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Figure 4.2: Total variation distance from the target distribution.

sample for the process above. Then,

p = P(Y > 600 ∩ ϕ{600} ∈ {2, 3} |π,G)

= P(ϕ{600} ∈ {2, 3} |π,G, Y > 600) P(Y > 600 |π,G)

= 3.34× 10−7

If one decides a discrepancy from the true distribution of 5% in total variation distance

is acceptable, then 300 rejection sampled processes will be required. The total number

of samples, K, required in order to produce a single sample from fΦ |Ψ(ϕi |π,G, Yi = yi)

is then Negative Binomially distributed with r = 300, p = 3.34× 10−7, so that

E[K] = 897, 867, 259 and 95% CI = [799, 129, 604 , 1, 002, 273, 104]

It is worth pausing at the end of this subsection to reinforce the fact that these

figures are to produce one sample process, concordant with one observation, at one

realisation of the parameters: this may be roughly multiplied up by the size of the

dataset, y, and then multiplied up again for the number of data augmented Gibbs steps

required to reduce the Markov chain Monte Carlo standard error for the expectation

of the functional of interest to an acceptable level.

4.1.4 Summary

This section has provided an analysis of the methodology of Bladt et al. (2003) in

terms of both model specification and computational performance. In the process,

75



aspects which either impede effective inference or simply make computing the answer

impractical in the context of reliability modelling have been elucidated.

The next section provides several major contributions of this thesis, with extensions

to the methodology of Bladt et al. (2003) presented.

4.2 Extensions to the methodology

The extensions to the original work fall into three areas: model reformulation, compu-

tational improvements and censored data.

4.2.1 Model reformulation

As discussed in §4.1.1, the algorithm assumes a rate matrix for the Phase-type distri-

bution which is both completely dense and where every rate can vary independently.

However, when the objective is scientific modelling of a process about which there is

some known structure or theory this may not be a desirable property.

Firstly, constraining a parameter to zero is a straight-forward procedure as was the

case for the EM-algorithm of Asmussen et al. (1996). The parameter is simply fixed at

zero when simulating the latent process and no new values are drawn in the Gibbs step:

this solves the problem because this entry of G is no longer treated as an unknown

parameter, hence excluding it from all inferential procedures.

The second matter — that of constrained equality for certain parameters — re-

quires examination of the posterior density. In the original methodology, parameters

on different rows of the Markov chain generator shared a common scale hyperparameter

in their Gamma priors with freely varying shape, but when adding special structures

this can lead to every parameter in the model sharing a common scale hyperparameter

if there is a single parameter which appears in every row (or indeed, if there is just

no empty intersection between the rows in which all parameters appear). Thus, we

commence by adjusting the prior structure with freely varying scale hyperparameters

and thereafter show the model can be reformulated with conjugacy preserved.

Take λk, k = 1, . . . ,m, as the parameters appearing in the generator of the Phase-

type distribution. Then each Sij = 0 or cijλk and each si = 0 or ci0λk for some k and
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cij ∈ R+. Let

Λk = {(i, j) : Sij = cijλk} ∪ {(i, 0) : si = ci0λk}

represent the set of all entries where λk appears, for each k.

Specify independent Gamma priors on each λk and retain the Dirichlet prior on π:

λk ∼ Gamma(shape = νk, scale = 1/ζk)

π ∼ Dirichlet(β = (β1, . . . , βn)
T)

so that the full prior specification is:

fΨ(π,G) =
n∏
i=1

πβi−1
i

m∏
i=1

λνi−1
i e−λiζi

The likelihood function for a Phase-type density can be written as in (3.9), page 60:

fΦ(ϕ;π,G) =
n∏
i=1

πbii

n∏
i=1

sNi0
i exp{−sizi}

n∏
i=1

n∏
j=1
j ̸=i

S
Nij

ij exp{−Sijzi}

where b,N and z are the sufficient statistics of the chain resulting from simulation

of the latent process. Recall, these quantities are: number of transitions i → j, Nij;

number of absorbing moves i → n + 1, Ni0; total time in state i, zi; and number of

chains starting in state i, bi.

Letting

N∗
k =

∑∑
(i,j)∈Λk

Nij

z∗k =
∑∑
(i,j)∈Λk

cijzi

enables the likelihood to be directly expressed in terms of the m parameters:

fΦ(ϕ;π,G) =
n∏
i=1

πbii

m∏
i=1

λ
N∗

i
i exp{−λiz∗i }

The posterior can then be written as:

fΨ |Φ(π,G |ϕ) ∝ fΨ(π,G)fΦ(ϕ;π,G)

=

(
n∏
i=1

πβi−1
i

m∏
i=1

λνi−1
i exp{−λiζi}

)(
n∏
i=1

πbii

m∏
i=1

λ
N∗

i
i exp{−λiz∗i }

)

=
n∏
i=1

πβi+bi−1
i

m∏
i=1

λ
νi+N

∗
i −1

i e−λi(ζi+z
∗
i )
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Thus, the full conditional posteriors for each parameter are now:

λk |ϕ ∼ Gamma(shape = νk +N∗
k , scale = 1/(ζk + z∗k))

π |ϕ ∼ Dirichlet(β = (β1 + b1, . . . , βn + bn))

This shows it is possible to impose structure in the form of zeros and equal entries

in the generator, G, whilst maintaining the conjugacy properties of a Gamma prior,

as derived on page 36. This retains the simple form of the data augmented Gibbs

sampling procedure, with an elementary change to the parameter updating through

N∗ and z∗.

The next section considers improvements to the latent process sampling approach.

4.2.2 Latent process simulation

To address the problems detailed in §4.1.3, we develop an alternative to the Metropolis-

Hastings approach to simulating the latent process.

4.2.2.1 Pilot solutions

In the course of this research, the author progressed through numerous ideas of varying

efficacy before arriving at the solution presented in detail in the sequel. Those early

ideas are presented in highly abbreviated form here to provide a brief narrative behind

the development.

Very early work included a scheme to simulate directly from fΦ |Ψ(ϕi |π,G, Yi ≥ yi)

to eliminate the need for rejection sampling the proposals. However, this only addresses

problem I, and not problems II or III. This earliest concept remains in some form as

will be seen later when handling censored data.

A second evolution of the idea transpired to be overly tailored to reliability prob-

lems. It resolved problem II in situations where there was a fixed starting state

which coincided with the most commonly inhabited state of the process, but from

which absorption was impossible. For example, state 1 in the (repairable) two com-

ponent parallel system example in (2.10), page 29, fulfils this criterion. The solu-

tion involved simulating the chain in reverse: that is, select the starting state from

P(ϕ{y} = i |π,G, Y = y) and then simulate in reverse until time zero, ergo 99.8%

of sampled processes are valid (for the example values in Table 4.2). However, the
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problem-specific nature of the solution is troublesome and after lengthy efforts there

was limited progress toward mathematically proving the resultant samples were from

the required target distribution. This avenue was therefore set aside.

The pursuit of a resolution for problem II led to considering the possibility of

simulating the required sufficient statistics directly, rather than simulating the latent

process. Of course Asmussen et al. (1996) provide a means of finding the expectation

of the sufficient statistics for any given parameters, but the distributional form (even

approximately) of these remained elusive. This route was set aside, but not forgotten.

It is interesting that recently, and well after having decided to move on from this av-

enue, Hobolth and Jensen (2011) examined continuous-time Markov process summary

statistics under somewhat similar endpoint conditioning, which it may be possible to

adapt. This falls under an exciting avenue of future research.

The first generally applicable breakthrough in addressing problem II was adapting a

solution to a different problem, presented in Hobolth and Stone (2009). They consider

simulating an irreducible continuous-time Markov process conditional on the process

inhabiting a given state at a certain time. In contrast, the processes under consideration

here are reducible and conditioned on a particular state move occurring at an exact

time (i.e. a move to the closed absorbing state at an exact time, not merely being in

that state at a given time). This was adapted in two ways:

The first version adjusted their ‘direct simulation’ method to handle reducibility

and additionally so that the end-point conditioning was on a set of states rather than

a single one (here, those states i where si ̸= 0). This was then used to produce the

proposal processes in place of rejection sampling, because the resultant samples would

be guaranteed to reach y and to inhabit a valid state for truncation.

The second version followed after the development of Theorem 4.1. In this version,

the end-point state is first drawn from the discrete distribution P(ϕ{y} = i |π,G, Y = y)

and then the above method used to sample a process which will be in that state at

time y. This obviates any need for a Metropolis-Hastings update at all: the first such

process sampled will be from the target distribution upon truncation, by the strong

Markov property.

However, the first assumption of Hobolth and Stone (2009) in the derivation is that

an eigendecomposition of the irreducible continuous-time Markov chain generator is
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available for computation of the matrix exponential. As indicated in Moler and Van

Loan (2003), this is not always an ideal choice for computing the matrix exponential,

although it does possess very attractive computational advantages. This leads to the

solution which is to be presented in detail in this thesis. In a similar spirit to that

work, an algorithm was therefore developed which: is tailored specifically to the exact

state move problem at hand; admits computation in the event that eigendecomposition

is inadequate or unavailable; and yet allows the computational advantage of eigende-

composition when it is available and accurate. This new algorithm has been named

‘Exact Conditional Sampling’ (ECS).

4.2.2.2 Exact Conditional Sampling (ECS)

The approach is to adapt the standard algorithm for unconditional simulation of an

absorbing continuous-time Markov chain (Algorithm 2.1) by explicitly conditioning on

an absorption time Y = y in every part of that algorithm. To do so, new expressions

for the starting state, sojourn times and state moves must be derived. The discrete

nature of the starting state and state move probabilities make them, in principle at

least, routine. The statement and proof of the following Lemma provides them and is

a contribution of this thesis.

Lemma 4.3 (ECS starting state and transitions) Let G be the generator of an

n+ 1 state absorbing continuous-time Markov process in the form (2.11), and let π be

the probability vector for the distribution of the starting state. Conditional on the fact

that the process enters state n+ 1 at exactly time Y = y,

1. the distribution of the starting state is:

P(ϕ{0} = i |π,G, Y = y) =
eTi exp{Sy}s πi
πT exp{Sy}s

(4.2)

2. if the process has reached time t and it has already been determined that a non-

absorbing jump occurs after a further time d — so that t + d < y — then the

embedded discrete chain state move probabilities become:

P(ϕ{t+d} = j |π,G, Y = y, ϕ[t,t+d) = i, ϕ{t+d} ∈ {1, . . . , n} \ i)

∝ Sij e
T
j exp{S(y − t− d)}s (4.3)
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Proof: The unconditional selection of starting state is simply a draw from the discrete

probability mass function defined by π

P(ϕ{0} = i |π,S) = πi

The distribution of the random variable Y is Phase-type (Definition 2.15). Therefore,

for the first part of the Lemma, the conditional version of the starting state introduces

a Phase-type adjustment:

P(ϕ{0} = i |π,S, Y = y) =
fY (Y = y |π,S, ϕ{0} = i) P(ϕ{0} = i |π,S)

fY (Y = y |π,S)

=
fY (Y = y |S, ϕ{0} = i) P(ϕ{0} = i |π,S)

fY (Y = y |π,S)

=
eTi exp{Sy}s πi
πT exp{Sy}s

as required, where ei is a vector of zeros with a single one in the ith position.

Unconditional on any absorption information, selection of a state move, after the

sojourn d has been determined, is a draw from the discrete mass defined by:

P(ϕ{t+d} = j |π,G, ϕ[t,t+d) = i, ϕ{t+d} ∈ {1, . . . , n+ 1} \ i) = −Gij/Gii ∀ t ≥ 0, d > 0

For the second part of the Lemma, the conditional version again introduces a Phase-

type adjustment:

P(ϕ{t+d} = j |π,G, Y = y, ϕ[t,t+d) = i, ϕ{t+d} ∈ {1, . . . , n} \ i)

∝ fY (Y = y |G, ϕ[t,t+d) = i, ϕ{t+d} = j ∈ {1, . . . , n} \ i)

× P(ϕ{t+d} = j |G, ϕ[t,t+d) = i, ϕ{t+d} ∈ {1, . . . , n} \ i)

= Sij e
T
j exp{S(y − t− d)}s

as required. □

The sojourn time distribution is slightly more complicated. At a time t, the cu-

mulative distribution function of the sojourn is continuous on [0, y − t), with a jump

discontinuity at {y − t} to 1 — a generalised probability density function: there is no

probability density function with respect to the usual Lebesgue measure. Although

the single time y− t has Lebesgue measure zero, there is a discrete mass of probability

because ultimately some jump must be made to absorption at exactly time y.
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Thus, sampling would best be handled by splitting the sojourn time in two: first

determine whether the sojourn is exactly y− t (i.e. absorption) or not; if not the jump

time is then from a continuous distribution over a finite half-closed interval (whose

probability density function can be written down). The statement and proof of the

following Lemma shows how to achieve this and is a contribution of the thesis.

Lemma 4.4 (ECS sojourn time) Let G be the generator of an n+1 state absorbing

continuous-time Markov process in the form (2.11), and let π be the probability vector

for the distribution of the starting state. If the process is currently in state i at time t,

and conditional on the fact that the process enters state n+ 1 at exactly time Y = y,

1. then the probability that the next move is to absorption after exactly y − t longer

is:

P(ϕ[t,y) = i ∩ ϕ{y} = n+ 1 |G, Y = y, ϕ{t} = i) =
exp{Sii(y − t)} si
eTi exp{S(y − t)}s

(4.4)

2. then the density of the sojourn until the next move, given that the move is not

absorbing, is:

f∆ |Y (δ = d |G, Y = y, ϕ[t,t+δ) = i, ϕ{t+δ} ∈ {1, . . . , n} \ i)

=
pT
i· exp{S(y − t− d)}s (−Sii) exp(Siid)∫ y−t

0

pT
i· exp{S(y − t− δ)}s (−Sii) exp(Siiδ) dδ

(4.5)

Proof:

P(ϕ[t,y) = i ∩ ϕ{y} = n+ 1 |G, Y = y, ϕ{t} = i)

=
P(Y = y |G, ϕ[t,y) = i, ϕ{y} = n+ 1) P(ϕ[t,y) = i ∩ ϕ{y} = n+ 1 |G, ϕ{t} = i)

P(Y = y |G, ϕ{t} = i)

=
P(ϕ[t,y) = i |G, ϕ{t} = i) P(ϕ{y} = n+ 1 |G, ϕ{t} = i, ϕ[t,y) = i)

P(Y = y |G, ϕ{t} = i)

=
exp{Sii(y − t)} si
eTi exp{S(y − t)}s

as required.

The sojourn time is now free to be calculated without the concern of discrete prob-

ability mass at y− t. Thus, we condition on the known absorption time and given that
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the next move will not be an absorbing one:

f∆ |Y (δ = d |G, Y = y, ϕ[t,t+δ) = i, ϕ{t+δ} ∈ {1, . . . , n} \ i)

= fY |∆(Y = y |G, ϕ[t,t+δ) = i, ϕ{t+δ} ∈ {1, . . . , n} \ i, δ = d)

× f∆(δ = d |G, ϕ[t,t+δ) = i, ϕ{t+δ} ∈ {1, . . . , n} \ i)

÷ fY (Y = y |G, ϕ[t,t+δ) = i, ϕ{t+δ} ∈ {1, . . . , n} \ i)

=
pT
i· exp{S(y − t− d)}s (−Sii) exp(Siid)∫ y−t

0

pT
i· exp{S(y − t− δ)}s (−Sii) exp(Siiδ) dδ

for d ∈ [0, y − t)

as required, where pi· = (pij) is the vector of unconditional jump probabilities i → j,

excluding absorption. □

Equations (4.2) and (4.3) are straight-forward to sample from, being discrete dis-

tributions with only n and n − 1 possible outcomes respectively. Evaluation of (4.4)

is also straight-forward and a decision simply involves comparison to a Uniform(0,1)

random number. However, (4.5) is a continuous distribution on [0, y−t) which is rather

more complex. The method proposed here is a form of inversion by numerical solution

(Devroye, 1986). The statement and proof of the following Lemma describes how and

is a contribution of this thesis.

Lemma 4.5 (Sampling of density (4.5)) Random samples can be generated from

the density in equation (4.5) by drawing z where Z ∼ Uniform(0, 1) and numerically

solving for d ∈ [0, y − t) in:

z =
pT
i· exp{S(y − t)}(S− ISii)

−1[I− exp{−d(S− ISii)}]s
pT
i· exp{S(y − t)}(S− ISii)−1[I− exp{−(y − t)(S− ISii)}]s

(4.6)

Or, if S admits an acceptable eigendecomposition, S = QLQ−1, by which it is meant

where ∥Q∥∥Q−1∥ is not large (see Moler and Van Loan, 2003), then random sam-

ples can be generated from the density in equation (4.5) by drawing z where Z ∼

Uniform(0, 1) and numerically solving for d ∈ [0, y − t) in:

pT
i·Q(L− ISii)

−1(Vz −Ud)Q
−1s = 0 (4.7)

where

Vz = (z − 1) exp{L(y − t)} − z exp{(y − t)Sii}

Ud = exp{L(y − t)− d(L− ISii)}
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Proof: Integrating the density (4.5) analytically to give the conditional jump distribu-

tion is possible, since:∫ d

0

pT
j· exp{S(y − t− x)}s (−Sii) exp(Siix) dx

= (−Sii)pT
j· exp{S(y − t)}

[
− (S− ISii)

−1 exp{−x(S− ISii)}
]d
0
s

= (−Sii)pT
j· exp{S(y − t)}(S− ISii)

−1[I− exp{−d(S− ISii)}]s

Thus, the cumulative distribution function for the conditional jump time is:

F∆ |Y (d) =
pT
i· exp{S(y − t)}(S− ISii)

−1[I− exp{−d(S− ISii)}]s
pT
i· exp{S(y − t)}(S− ISii)−1[I− exp{−(y − t)(S− ISii)}]s

For inverse sampling from the distribution (Devroye, 1986), this means generating a

random Z ∼ Uniform(0, 1) and solving for d ∈ [0, y − t) in (4.6), as required.

Note that pi·p
T
i· is singular, so this cannot be directly solved. Instead, it is possible

to exploit the fact that numerator and denominator are effectively scalar products in

order to slightly simplify the problem for a numerical root finder:

=⇒ 0 = pT
i· exp{S(y − t)}(S− ISii)

−1[Iz − z exp{−(y − t)(S− ISii)}]s

− pT
i· exp{S(y − t)}(S− ISii)

−1[I− exp{−d(S− ISii)}]s

= ⟨[pT
i· exp{S(y − t)}(S− ISii)

−1]T, [Iz − z exp{−(y − t)(S− ISii)}]s⟩

− ⟨[pT
i· exp{S(y − t)}(S− ISii)

−1]T, [I− exp{−d(S− ISii)}]s⟩

= ⟨[pT
i· exp{S(y − t)}(S− ISii)

−1]T,

[I(z − 1)− z exp{−(y − t)(S− ISii)}+ exp{−d(S− ISii)}]s⟩

where ⟨·, ·⟩ is the scalar product and the matrices operating on s are viewed as linear

operators. This achieves little immediately, but if S admits an acceptable eigendecom-

position, S = QLQ−1, then this simplifies to:

pT
i·Q(L− ISii)

−1(Vz −Ud)Q
−1s = 0

where

Vz = (z − 1) exp{L(y − t)} − z exp{(y − t)Sii}

Ud = exp{L(y − t)− d(L− ISii)}
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due to the commutativity of the diagonal L. □

Accordingly, this Theorem leads to a choice: in the event that S admits an eigen-

decomposition which computes the matrix exponential stably, one can proceed using

(4.7). However, if it does not, then at the cost of some additional computation any

matrix exponential algorithm can be used together with equation (4.6), such as the

fairly recent and (“uniformly”) superior method due to Higham (2008).

Note that the form of (4.7) is not contrived: it provides a form which enables

considerable computational efficiency. In particular,

• The eigendecomposition S = QLQ−1, and the 1× n and n × 1 terms pT
i·Q(L −

ISii)
−1 and Q−1s need only be computed once per outer Gibbs iteration. There-

after, every step within every latent path simulated for every observation in the

dataset uses the same decomposition and the two terms.

• Vz is a diagonal n dimensional matrix, only needing to be computed once for

each sample required from F∆ |Y (d).

• Ud is a diagonal n dimensional matrix, and is the only term which needs to be

computed on every step of the root finder.

Thus, coded for maximum efficiency, the root finder only involves evaluation of n

exponentials, 3n multiplications and 3n additions for each iteration. Some care is

needed if (4.7) approaches machine precision over the whole interval d ∈ [0, y − t). In

those edge cases, sacrificing some speed on that sojourn sample and using Adaptive

Rejection Metropolis Sampling (Gilks et al., 1995) with the unnormalised density (4.5)

has always proved adequate in testing.

Bringing all these Lemmas together leads to the Exact Conditional Sampling algo-

rithm which may now be stated in full.

Algorithm 4.1 (Exact Conditional Sampling) Produce a sample process directly

from fΦ |Ψ(ϕ |π,G, Y = y) as follows:

i) Sample a starting state, i, from the probability mass function (Lemma 4.3, (4.2)):

P(ϕ{0} = i |π,G, Y = y) =
eTi exp{Sy}s πi
πT exp{Sy}s

and set t = 0

85



ii) With probability (Lemma 4.4, (4.4)):

P(ϕ[t,y) = i ∩ ϕ{y} = n+ 1 |G, Y = y, ϕ{t} = i) =
exp{Sii(y − t)} si
eTi exp{S(y − t)}s

set ϕ[t,y) = i and ϕ[y,∞) = n+ 1 and end the algorithm; else continue to (iii)

iii) Sample the sojourn time, d, in the current state, i, before a non-absorbing move

from (Lemma 4.4, (4.5)):

f∆ |Y (δ = d |G, Y = y, ϕ[t,t+δ) = i, ϕ{t+δ} ∈ {1, . . . , n} \ i)

=
pT
i· exp{S(y − t− d)}s (−Sii) exp(Siid)∫ y−t

0

pT
i· exp{S(y − t− δ)}s (−Sii) exp(Siiδ) dδ

(4.8)

using the methods of Lemma 4.5 and set ϕ[t,t+d) = i

iv) Sample a state move, i→ j, from (Lemma 4.3, (4.3)):

P(ϕ{t+d} = j |π,G, Y = y, ϕ[t,t+d) = i, ϕ{t+d} ∈ {1, . . . , n} \ i)

∝ Sij e
T
j exp{S(y − t− d)}s

and set ϕ{t+d} = j

v) Update t = t+ d and i = j, then loop to (ii) □

This algorithm is intended to completely replace the Metropolis-Hastings part of

Bladt et al. (2003). A full comparison will follow toward the end of this chapter.

4.2.3 Incorporating censored data

Ignoring the advances of §4.2.2 momentarily, right-censored observations can be dealt

with quite elegantly within the original algorithm. The data will now consist of some

actual and some censored observations, y = {y1, . . . , ym, ycm+1, . . . , y
c
n}, where a su-

perscript ‘c’ denotes right-censoring. Now when the Metropolis-Hastings algorithm is

invoked to sample the latent process from fΦ |Ψ(ϕi |π,G, Yi = yi), it should be used

as normal for {y1, . . . , ym}, but clearly for {ycm+1, . . . , y
c
n} sampling should be from

fΦ |Ψ(ϕi |π,G, Yi > yi) — that is, the first rejection sampled proposal process can be

immediately returned. It is important to note though that the simulation must pro-

ceed through to absorption for these observations, where previously it was possible to
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stop short once the observation time was reached since truncation would occur. This

simple modification allows incorporation of the censored observations in the likelihood

through the latent process simulation.

Consequently, censored observations will not suffer computational problems II or

III described in §4.1.3, though they will still suffer from problem I. Thus, a similar

approach to §4.2.2 is employed (making use of the early work described in that section).

Lemma 4.6 (ECS for censored absorption times) Let G be the generator of an

n+ 1 state absorbing continuous-time Markov process in the form (2.11), and let π be

the probability vector for the distribution of the starting state. Then, conditional on the

fact that the process enters state n+ 1 at some time Y > y,

1. the distribution of the starting state is:

P(ϕ{0} = i |π,G, Y > y) =
eTi exp{Sy}e πi
πT exp{Sy}e

(4.9)

2. if the process has reached time t < y then the density of the sojourn until the next

move, is:

f∆ |Y (δ = d |G, Y > y, ϕ{t} = i)

∝

 pT
i· exp{S(y − t− d)}e (−Sii) exp(Siid) for d ∈ [0, y − t)

−Sii exp(Siid) for d > y − t
(4.10)

3. if the process has reached time t < y and it has already been determined that a

jump occur after a further time d, then the embedded discrete chain state move

probabilities become:

P(ϕ{t+d} = j |π,G, Y > y, ϕ[t,t+d) = i, ϕ{t+d} ̸= i)

∝

 Sij e
T
j exp{S(y − t− d)}e if d < y − t

Sij if d ≥ y − t
(4.11)

4. if the process has reached time t ≥ y then sojourn and state move probabilities

are as in Algorithm 2.1, page 27.
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Proof:

P(ϕ{0} = i |π,G, Y > y) =
fY (Y > y |π,G, ϕ{0} = i) P(ϕ{0} = i |π,S)

fY (Y > y |π,S)

=
eTi exp{Sy}e πi
πT exp{Sy}e

as required, where ei is a vector with one in the ith position and zero elsewhere; and e

is a vector of all ones.

f∆ |Y (δ = d |G, Y > y, ϕ{t} = i)

∝ fY (Y > y |G, ϕ{t} = i, δ = d) f∆(δ = d |G, ϕ{t} = i)

=

 pT
i· exp{S(y − t− d)}e (−Sii) exp(Siid) for d ∈ [0, y − t)

−Sii exp(Siid) for d > y − t

as required, where pi· = (pij) is the n-dimensional vector of unconditional jump prob-

abilities i→ j. Note that this is an Exponential density beyond y − t.

P(ϕ{t+d} = j |π,G, Y > y, ϕ[t,t+d) = i, ϕ{t+d} ̸= i)

∝ P(Y > y |G, ϕ[t,t+d) = i, ϕ{t+d} = j ̸= i)

× P(ϕ{t+d} = j |G, ϕ[t,t+d) = i, ϕ{t+d} ̸= i)

=

 Sij e
T
j exp{S(y − t− d)}e if d < y − t

Sij if d ≥ y − t

as required.

The final point to note is that once the process has passed time y, then conditioning

on an absorption time Y > y has no effect — when using Bayes’ Theorem to change

the conditioning the first term will always equal 1. The final part of the Lemma then

follows. □

At first glance, using (4.10) in Lemma 4.6 could seem problematic: one must know

the size of the sampled sojourn before the density can be established. However, the

solution is elementary:

Corollary 4.7 In order to sample from the density in (4.10) when t < y:
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With probability eSii(y−t)/ei exp{S(y− t)}e set d = y− t+T where T ∼ Exp(−Sii);

else sample d from the density with support [0, y − t):

f∆ |Y (δ = d |G, Y > y, ϕ{t} = i) ∝ pT
i· exp{S(y − t− d)}e (−Sii) exp(Siid)

Proof: The first step is to determine whether d ∈ [0, y − t) or d ∈ [y − t,∞). This can

be determined as:

P(d ∈ [y − t,∞)) = f∆ |Y (δ > y − t |G, Y > y, ϕ{t} = i)

=
fY |∆(Y > y |G, ϕ{t} = i, δ > y − t) f∆(δ > y − t |G, ϕ{t} = i)

fY (Y > y |G, ϕ{t} = i)

=
1 eSii(y−t)

ei exp{S(y − t)}e

Consequently, with this probability the sample d exceeds y − t, where the density is

proportional to an Exponential distribution. Thus, δ | δ > y − t is Exponential and so

d can be sampled as d = y − t+ T where T ∼ Exp(−Sii).

Otherwise, d is sampled from the part of f∆ |Y where d ∈ [0, y − t), which is just a

renormalised version of the given density. □

Actually sampling from f∆ |Y on the interval [0, y − t) is then the objective. Ex-

perience has shown that, unlike (4.5), this is often approximately log-linear. This

fact, together with a genuinely finite support, means it is particularly well suited to

application of Adaptive Rejection Metropolis Sampling (Gilks et al., 1995).

Algorithm 4.2 (ECS for Censored Observations) Produce a sample process di-

rectly from fΦ |Ψ(ϕ |π,G, Y > y) as follows, using the results of Lemma 4.6:

1. Sample a starting state, i, from the probability mass function (4.9):

P(ϕ{0} = i |π,G, Y > y) =
eTi exp{Sy}e πi
πT exp{Sy}e

and set t = 0

2. If t > y, then switch to Algorithm 2.1 (page 27) and pick up from step 2 there,

otherwise continue.

3. Sample the sojourn time in the current state, δ. With probability

eSii(y−t)/ei exp{S(y − t)}e
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the sojourn time is d = y − t + T where T ∼ Exp(−Sii). Else, the sojourn time

is a sample from the following finitely supported density on [0, y − t)

f∆ |Y (δ = d |G, Y > y, ϕ{t} = i) ∝ pT
i· exp{S(y − t− d)}e (−Sii) exp(Siid)

Set ϕ[t,t+d) = i

4. Sample a state move, i→ j (i ̸= j), from

P(ϕ{t+d} = j |π,G, Y > y, ϕ[t,t+d) = i, ϕ{t+d} ̸= i)

∝

 Sij e
T
j exp{S(y − t− d)}e if d < y − t

Sij if d ≥ y − t

and set ϕ{t+d} = j

5. If j = n+ 1, exit loop. Else, update t = t+ d and i = j, then loop to (ii) □

This algorithm is intended to complement Algorithm 4.1, being used for those

observations which constitute censored observation times.

4.3 Examining the extended methodology

Everything in this section was computed using Aslett (2011), which is a major contri-

bution of this thesis, discussed further in Chapter 7.

The novel extensions proposed in the preceding section are now examined in three

ways. First, the benefits of the model reformulation in §4.2.1 are explored, when the

objective of inference is learning about interpretable parameters. Second, is detailed

examination of the computational improvements, from §4.2.2, through simulation of

the latent stochastic process in isolation. This shows good performance both in the

presence and absence of the problems which motivated its development. Finally, the

first example is rerun with some observations randomly censored to show inference

remains tenable.

4.3.1 Effect of model reformulation

Exactly the same simulated data as in the example from §4.1.1 are used to enable

direct comparison. In terms of the new model formulation, the following structure is
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Ground
Expectation

Lower Upper

Truth 95% quantile 95% quantile

λf = 1.8
1.79 1.44 2.17

( 0.00344 ) ( 0.00543 ) ( 0.00676 )

λr = 9.5
11.1 9.56 12.8

( 0.0132 ) ( 0.0253 ) ( 0.0256 )

Table 4.3: Posterior summary statistics for simulations from known ground truth

using extended methodology. Bracketed figures are MCMC standard errors.

imposed:

Λf = {(1, 2), (1, 3), (2, 0), (3, 0)}

Λr = {(2, 1), (3, 1)}

with zero constraints on {(2, 3), (3, 2), (1, 0)}. In this case, cij = 1 ∀ (i, j) ∈ Λf ∪ Λr.

Prior specification in the extended methodology is taken as:

νλf = 24 and ζλf = 16

νλr = 180 and ζλr = 16

which ensures that the prior matches the original example, even though the extended

methodology allows for a more flexible prior specification. Again, 10, 000 iterations

were run and Table 4.3 shows the resultant summary estimates, with MCMC standard

errors calculated as discussed at the end of §3.2.4. Posterior sample box plots are

shown in Figure 4.3.

The reformulation of the model has, as would be expected, improved estimates

of the underlying two parameters and there was no need to estimate the prohibited

transition rates. The estimate of λf has notably improved accuracy, but the estimate

of λr is only just still outside the 95% interval and the posterior is effectively a slightly

location shifted version of the prior. However, apropos of repair rates, Daneshkhah and

Bedford (2008) show system lifetime is considerably less sensitive to rate of repair than

rate of failure, which would affect how well such a parameter could be inferred without

a substantial number of observations. As a result, with the known correct model here,

it may be taken that this is as much as one could hope to learn about the repair rate.

91



F

1.5 2.0 2.5
Parameter Value

P
ar

am
et

er

R

9 11 13
Parameter Value

P
ar

am
et

er

Figure 4.3: Boxplot for posterior simulations from known ground truth using extended

methodology. Solid vertical lines show ground truth values.

4.3.2 Computational performance

Consider simulating a continuous-time Markov process which absorbs at a given time,

as required for the data augmented Phase-type MCMC algorithm. The comparison

of interest is between the Metropolis-Hastings with rejection sampling of Bladt et al.

(2003) and the Exact Conditional Sampling of §4.2.2. This is done in two example

situations: one in the presence of, and the other in the absence of, the three major

problems elucidated in §4.1.3. This is to demonstrate the new approach is acceptably

fast in ‘easy’ situations and to highlight the potential gains where the computational

problems become acute.

Finally, a comparison of the performance of simulating the latent process at varying

depths into the tail of the absorption time distribution is given.

The timings in this section are based on the highly optimised C code publicly

available in the PhaseType package (Aslett, 2011), running on a MacBook Pro (mid-

2007, ‘MacBookPro3,1’) with an Intel Core 2 Duo 2.4GHz CPU.
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4.3.2.1 Example with no major problems

Take a continuous-time Markov chain which always starts in state 1, whose generator

is:

G =


−3 1 1 1

1 −3 1 1

1 1 −3 1

0 0 0 0


Simulation of this chain, conditional on absorbing at time y = 0.7, does not exhibit

problems I, II or III of §4.1.3. In particular:

I. The probability of reaching y for a rejection sample is approximately 0.5.

II. There are no zero constraints on absorbing moves.

III. The total variation distance is zero from the first Metropolis-Hastings iteration,

so it starts in stationarity.

Under such ‘ideal’ conditions (for the original algorithm), the mean processing time

for the Metropolis-Hastings algorithm is on the order of 1.6 micro-seconds (standard

deviation 104 micro-seconds). The novel Exact Conditional Sampling algorithm has

mean processing time of 7.2 micro-seconds (standard deviation 19 micro-seconds). As

expected, on average the original algorithm is faster under these conditions, but the

new approach could not be characterised as ‘slow’ and has considerably less variable

run-time.

4.3.2.2 Example exhibiting acute problems

Conversely, consider the continuous-time Markov process of (4.1) which, as already

discussed, exhibits all of the problems I–III. Recall that simulation of this process

conditional on absorbing at time y = 600 implies that the total number of samples, K,

required in order to produce a single sample from fΦ |Ψ(ϕi |π,G, Yi = yi) has:

E[K] = 897, 867, 259 and 95% CI = [799, 129, 604 , 1, 002, 273, 104]

Further, recall that drawing such samples must be repeated for each observation

yi in the data set on every Gibbs iteration. For this example, sampling a single path
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Figure 4.4: Speed of original (MH+RS) and new (ECS) sampling methodologies at

varying right tail probabilities, with bootstrap resampled confidence intervals from 50

simulations at each x.

conditional on an exact absorption time took 18.5 hours for the Metropolis-Hastings al-

gorithm, and a mere 0.0087 seconds for the novel Exact Conditional Sampling method-

ology. This demonstrates that the new algorithm is substantially faster in instances

where the problems described earlier occur. In particular, the new algorithm would

not cause the MCMC procedure to stall in such scenarios.

4.3.2.3 Tail depth speed improvements

Finally, a direct comparison of the impact of right-tail observations on the simula-

tion time is considered. As described in problem I, the exploration of the parameter

space may lead to the right-tail Phase-type probability beyond some observations being

very small and this is something which still conceivably affects ECS: since the process

is being simulated, larger observations imply more process state changes and longer

simulations. Accordingly, it is relevant to examine this problem in isolation.

The impact of decreasing right-tail probability can be illustrated by taking fixed

parameters and choosing a y such that P(Y > y |π,G) = 10−x for increasing values x.

Using the two component parallel system example in (2.10), page 29, with λf = 1/478

and λr = 1/39, the time to simulate a chain when conditioning on such y under old

and new methodology is shown in Figure 4.4.

Note in particular that logarithmic time is plotted: consequently, the rate of slow-

down in the original methodology is sharp and the confidence bounds fan out exten-

sively. In contrast, ECS has modest increases over the full spectrum of tail probabilities
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Figure 4.5: Boxplot for posterior simulations from known ground truth using extended

methodology for 25% censoring on data. Solid vertical lines show ground truth values.

shown.

4.3.2.4 Effect of censoring

By way of comparison, the starting point was exactly the same model and data as used

in both §4.1.1 and §4.3.1. The 3rd quartile time was then used as a censoring time

to emulate an experiment in which the longest surviving 25% of units were censored

due to early termination of the study. The resulting parameter estimates are shown in

Figure 4.5 from an MCMC run of 10, 000 iterations which again reduced the standard

error enough to provide 2–3 significant figures in the 95% quantiles. While the posterior

mean is further from the ground truth, the estimate is not too poor given that there

are now only 18 exact observations.

The results were not substantively different when performing random censoring,

whereby 25% of the data was chosen at random and each replaced with a uniform

random draw between zero and the observation time.

4.3.3 Realistic 5 component bridge system

As mentioned earlier, the focus thus far has been on a relatively simple example —

the dual repairable redundant system — to aid clarity of exposition. However, it

is important to note that the technique is not restricted to such elementary models.

Consequently, the final example of this chapter is to perform inference in the case

of the repairable 5 component bridge system (Figure 2.3) with masked lifetime data.
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This also provides an example where some of the parameters are subject to a constant

multiple in certain elements of the generator.

This leads to a more sizable generator matrix. Row i corresponds to the system

state column in Table 2.1, and the diagonal is suppressed for readability (it simply

being the negative of the row sums):

G =



· λf λf 0 λf 0 0 0 λf 0 0 λf 0 0 0 0 0

λr · 0 λf 0 λf 0 0 0 λf 0 0 λf 0 0 0 0

λr 0 · λf 0 0 λf 0 0 0 0 0 0 λf 0 0 λf

0 λr λr · 0 0 0 λf 0 0 0 0 0 0 0 0 2λf

λr 0 0 0 · λf λf 0 0 0 λf 0 0 0 0 0 λf

0 λr 0 0 λr · 0 λf 0 0 0 0 0 0 0 0 2λf

0 0 λr 0 λr 0 · λf 0 0 0 0 0 0 0 0 2λf

0 0 0 λr 0 λr λr · 0 0 0 0 0 0 0 0 2λf

λr 0 0 0 0 0 0 0 · λf λf 0 0 0 λf 0 λf

0 λr 0 0 0 0 0 0 λr · 0 0 0 0 0 λf 2λf

0 0 0 0 λr 0 0 0 λr 0 · 0 0 0 0 0 3λf

λr 0 0 0 0 0 0 0 0 0 0 · λf λf λf 0 λf

0 λr 0 0 0 0 0 0 0 0 0 λr · 0 0 λf 2λf

0 0 λr 0 0 0 0 0 0 0 0 λr 0 · 0 0 3λf

0 0 0 0 0 0 0 0 λr 0 0 λr 0 0 · λf 2λf

0 0 0 0 0 0 0 0 0 λr 0 0 λr 0 λr · 2λf

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ·


(4.12)

The need to construct such generator matrices may initially seem to be an impedi-

ment to adoption of this approach by reliability practitioners, but the reader is referred

to Chapter 7 where statistical software contributions of this thesis actually make the

task trivial (§7.2.2, page 150).

The generator in (4.12) was used with λf = 1yr−1 and λr = 365 yr−1 to simulate

a data set of 25 observations. These values also represent more realistic parameter

values, with an expected component lifetime of 1 year and expected repair time of 1

day. Λf , Λr and cij were constructed in accordance with the generator and used to
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Ground
Expectation

Lower Upper

Truth 95% quantile 95% quantile

λf = 1
0.929 0.602 1.29

( 0.0089 ) ( 0.0175 ) ( 0.0218 )

λr = 365
390 179 667

( 6.76 ) ( 9.27 ) ( 36.9 )

Table 4.4: Posterior summary statistics for simulations from known ground truth

using extended methodology for 5 component bridge system. Bracketed figures are

MCMC standard errors.

infer the parameters in conjunction with prior specification:

νλf = 2.2 and ζλf = 1

νλr = 6 and ζλr = 0.015

This provides a 95% prior belief interval for the expected component lifetime of roughly

0.4 to 5.1 years, and for expected repair time of roughly 0.5 to 2 days.

The resultant posterior summaries are shown in Table 4.4 and Figure 4.6. This

example required 100, 000 MCMC iterations to reduce the standard error due to much

higher autocorrelation. The results are very encouraging and in line with the smaller

example: the repair rate proves difficult to learn with similar spread to the prior, but

the failure rate none the less has satisfactory posterior updating with the 95% credible

interval incorporating the ground truth and narrower than the prior interval. This is

encouraging given only 25 observations were simulated.

Even in this difficult example, the extended methodology performance was accept-

able by MCMC standards on a 5 year old laptop, completing 2.75 iterations per second

(for a total runtime of around 10 hours). If one uses the model reformulation, but

retains the Metropolis-Hastings latent process sampling instead of the new Exact Con-

ditional Sampling, then even performing only 10 Metropolis-Hastings iterations per

latent process results in execution at a rate of around 0.044 iterations per second

(leading to a total runtime of around 26 days2).

2Estimated run time based on less than 100, 000 iterations.
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Figure 4.6: Boxplot for posterior simulations from known ground truth using extended

methodology for 5 component bridge system. Solid vertical lines show ground truth

values.

4.4 Sensitivity to the prior

The final aspect to consider in evaluating the extended methodology is some gauge of

the sensitivity in posterior results to prior specification. There are at least two reasons

this is desirable to know: to increase confidence that the method is not too sensitive

to prior mis-specification; and in the event of limited resources to learn where prior

elicitation efforts would most beneficially be directed.

To informally explore the sensitivity, 100 failure times were simulated for a dual

repairable redundant system with parameters λf = 1.8 yr−1 and λr = 52 yr−1. Four

priors each were chosen for failure and repair rate (providing 8 priors in total): two

relatively vague and two which are stronger but incorrect (one overestimating and the

other underestimating the rate). All possible pairs of these priors were combined for

4× 4 = 16 MCMC runs, the results being depicted in Figures 4.7 and 4.8.

The failure rate posteriors show reasonable robustness to prior mis-specification.

The most interesting feature is that the vagueness or otherwise of the repair rate prior

greatly influences the variance of the failure rate posterior, whilst the failure rate prior

itself has negligible effect. As expected, the repair rate posteriors show little learning

taking place and, where it seems to occur (row 3, column 2 and row 4, column 1 repair

posteriors), it can easily be explained by the corresponding failure rate priors being

informative in the complementary direction.

This is just one illustration for the prevalent two parallel component subsystem de-
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Figure 4.7: Marginal failure rate posteriors for all combinations of 4 different failure

and repair rate priors. Prior parameters shown in the dark grey boxes (failure rate

across top, repair rate down the side), with failure rate prior densities depicted by

dashed line at the top. Ground truth is dotted vertical line.
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Figure 4.8: Marginal repair rate posteriors for all combinations of 4 different failure

and repair rate priors. Prior parameters shown in the dark grey boxes (repair rate

across top, failure rate down the side), with repair rate prior densities depicted by

dashed line at the top. Ground truth is dotted vertical line.
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sign with realistic parameter values. However, when using this methodology in practice

it would be prudent to conduct prior sensitivity simulations for the particular system

structure and type of parameters under consideration. In particular, note that for val-

ues of the failure and repair rate much closer together than is typical in highly reliable

systems this will certainly be a greater concern. Additionally, the techniques of this

chapter are not limited to modelling repairable systems and thus more general models

with different numbers of parameters and different generator structure each require

careful consideration in application.

4.5 Exchangeability

This chapter has been developed under the independent and identically distributed

(i.i.d.) systems case, since this is the simpler setting and has little direct bearing on

the latent process simulation which was the main preoccupation of this chapter.

However, it is possible to weaken this assumption to that of exchangeability, but

the development is deferred to Chapter 6 (see §6.3.4, page 137) where it is naturally

synthesised with the work of that chapter.

4.6 Generalisations

The work of Cano et al. (2010) and the work of this chapter represent the two extremes

of available information on a failure and repair (or general) process. Between the two

extremes there are many partial information scenarios, including for example:

1. Some part of the process may have been observed and the remainder be unob-

served.

2. It may be known how many failures and repairs took place, but not the various

times to failure or repair.

3. Only failure (or repair) times may be known through logging, but not the repair

(or failure) times.

4. The final state of the system at failure may be known (i.e. which component

failures had caused system failure and which were still working). This is pertinent
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for non-parallel systems such as the bridge system.

Some of these partial information scenarios should, in principle, be possible to

accommodate with only minor changes to the methodology. The first example simply

requires simulation of part of the process, so that the starting state will not necessarily

be full operation and the ending state not necessarily failure. Similarly, the fourth

example can be accomplished by conditioning on the restricted set of possible pre-

absorption states as alluded to in the final pilot idea on page 79: in other words, those

states from which a move to the known failure state is possible.

Scenarios 2 and 3 may require more work and would be interesting avenues of future

research.

4.7 Summary

A detailed study of the algorithm was presented, including exact conditions for conver-

gence of the latent process simulation for arbitrarily large generators with two non-zero

absorbing move rates. As a result of this study, it became evident that model reformu-

lation, facilitation of censored observations and computational speedups were required.

Three major contributions of the thesis were then put forward: model reformu-

lation to enable structured generator matrices; computational improvements to the

latent process simulation; and incorporation of censored data, including computational

aspects.

Finally, the chapter concluded with a comparison of the original and extended

methodologies from the perspective of parameter estimates and computational speed,

together with a more complicated example demonstrating the generality of the method

in a reliability setting.
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Chapter 5

Networks, Simply Connected

Systems & Their Signature

This short chapter develops some prosaic but essential tools for use in the remainder

of the thesis. There is a degree of consensus1 in the probability and statistics literature

that when component failure is the event of interest and the links between components

are perfectly reliable the term ‘system’ is commonly used. In contrast, when compo-

nents are perfectly reliable and link failure is the event of interest the term ‘network’

is commonly used.

Shaked and Suarez-Llorens (2003) provide a catalogue of all cut sets and signatures

of coherent systems up to order 4. Navarro and Rubio (2009) provided an algorithm to

compute the collection of all cut sets and all signatures of coherent systems of arbitrary

order, supplying a catalogue for the 180 coherent systems of order 5 in that paper. In

personal correspondence, Professor Jorge Navarro kindly provided electronic copies of

the same for the 16, 145 coherent systems of order 6.

Samaniego (2007, ch.6) alludes to the equal applicability of the signature to net-

works as opposed to systems, but there does not appear to have been a systematic

derivation of network signatures.

This chapter commences by disambiguating a slight clash in terminology between

computer/telecommunications experts and probabilists/statisticians. This motivates a

restricted class of ‘simply connected coherent systems’ which are pertinent to analysis

1A notable exception is the recent monograph by Gertsbakh and Shpungin (2011) which looks
at ‘network reliability’ where at varying points the nodes and/or links are unreliable but no rigidly
distinguishing terminology is used.
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of telecommunications and computer networks. The first contribution is an algorithm

which computes the network graph, cut sets and signatures of all ‘simply connected

coherent systems’ of arbitrary order. The chapter continues with a second contribution

which likewise computes the network graph, cut sets and signatures of all coherent

networks. Both algorithms are implemented providing the final contributions of the

chapter.

5.1 Colliding nomenclatures

Hereinafter, the terms component and node are used interchangeably as appropriate

for the context.

In computer science, the term ‘network’ commonly refers to an interconnected col-

lection of computers (or, more generically, nodes) which communicate by using direct

or indirect links. There is a natural correspondence to systems and networks in relia-

bility theory when components or links, respectively, are unreliable. However, there are

at least two key distinctions from the definitions of system and network as commonly

used by probabilists and statisticians:

1. A communications ‘network’ is not necessarily meant to imply that the links are

less reliable than the nodes.

2. Design patterns of communications ‘networks’ mean that not every coherent sys-

tem is representative of a possible network. In particular, the k-out-of-n systems2

are not common computer network designs3.

The author’s primary reliability interests relate to computer and telecommunica-

tions networks. Two simplifying assumptions are made: that there are no repeated

edges and that either links or nodes are unreliable but not both. Thus, if link failure is

of interest, the term ‘network’ is broadly applicable in both communities. When node

(component) failure is of interest, the communications network is to be treated using

system reliability, but the class of systems must be restricted, motivating the following

definition:

2A k-out-of-n system (k ≤ n) is any system comprising of n components which functions if and
only if there are k or more of the components functioning.

3An exception to this being when end-to-end link capacity is taken into account, which could
correspond to a complex consecutive k-out-of-n type system. This is not considered here.

104



Definition 5.1 (Simply connected coherent system) A coherent system is said

to be simply connected if a graph representation of the system exists in which each

component/node appears only once.

As a concept this is not novel, though the choice of wording may be. Agrawal and

Barlow (1984) refer to simply connected coherent systems as systems with a ‘network

graph’. However, mixing of terms in this way is undesirable since in the sequel link

and node failure are each of interest.

It is acknowledged that this set-up represents a highly idealised notion of a ‘com-

munications network’, but it enables potentially ‘useful’ models (in the sense of George

E. P. Box) to be developed.

Some very elementary graph theory terminology and concepts are used below which

were not covered in the literature review because it would require too great a diversion.

The unfamiliar reader is directed to a respected introductory text such as Bondy and

Murty (2008).

5.2 Simply connected systems

Consideration of only simply connected coherent systems enables the study of only

those systems which represent ‘networks’ most commonly used by computer scientists,

but where node failure is of interest. The following algorithm provides a way of cata-

loguing all simply connected coherent systems of order n.

First, note that it is often convenient to introduce two artificial components (often

labelled s and t in graph theory) representing either end of the graphical representation

of the system. These components cannot fail, but serve to determine whether a failure

has occurred: if s and t belong to the same connected component then the system is

still operational. Thus, when examining order n systems, the corresponding graph has

n+ 2 vertices.

The following algorithm is a contribution of this thesis.

Algorithm 5.1 Let S be the (initially) empty collection of minimal cut set repre-

sentations of simply connected coherent systems of order n and G the collection of

corresponding graphs.

For all integer values x from 0 to 2((n+2)2−n−2)/2 − 1, perform the following steps:
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1. Let b(x) be the n+ 2 dimensional binary vector representation of x. If
∑

i b
(x)
i <

n+ 1, or if b
(x)
n+1 = 1, proceed to the next value of x.

2. Create an (n+2)×(n+2) symmetric adjacency matrix, A, whose upper triangular

entries are filled row-wise by the binary representation of x.

A defines an undirected graph Gx(V,E). Label the first vertex s and the last

vertex t.

3. If the algebraic connectivity of the graph is zero, proceed to the next value of x.

4. Compute the collection Cx of all minimal (s, t) vertex cut sets of Gx. If the union

of all sets in Cx does not equal V \ {s, t}, proceed to the next value of x.

5. For each possible permutation σ(2, . . . , n + 1), if σ(Cx) ∈ S then proceed to the

next value of x.

6. If this step is reached, add Cx to S and correspondingly Gx to G, then proceed to

the next value of x. □

The following Theorem establishes the veracity of the algorithm and is a contribu-

tion of this thesis.

Theorem 5.1 Algorithm 5.1 produces the cut-sets and network graph representations

of all simply connected coherent systems.

Proof: Three things must be proven: (i) that every possible ‘network graph’ represen-

tation is checked; (ii) that no non-coherent systems are added to S; and (iii) that all

coherent systems are added to S.

First, every ‘network graph’ is an undirected graph. Moreover, every undirected

graph without self-loops or repeated edges can be represented by a symmetric binary

adjacency matrix with zeros on the diagonal and consequently is uniquely determined

by the binary upper triangular entries.

An (n + 2) × (n + 2) matrix has (n+2)2−n−2
2

upper triangular elements. Therefore,

the row-wise vector of upper triangular elements is an (n+2)2−n−2
2

dimensional binary

vector. Thus, the binary representation of the integers 0 to 2((n+2)2−n−2)/2 − 1 indexes

all possible adjacency matrices for undirected graphs with n+ 2 nodes as required.
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Secondly, assume a system which is not coherent reaches step 4. Then by Theorem

2.4, page 16, the union of all sets in the collection Cx will not consist of all (actual)

component vertices, V \ {s, t}. Thus any system which is not coherent is eliminated at

step 4, does not reach step 6 and so does not appear in S.

Clearly, only step 4 (and to avoid duplication, step 5) is necessary, but the other

steps aid computationally by reducing the number of systems for which the costly

operation of cut set computation is performed. Nonetheless, it remains to prove the

third item: that no coherent systems are eliminated in the process.

So, finally any order n coherent system must successfully pass all steps of the

algorithm:

1. If
∑

i b
(x)
i < n + 1 then at least one row, i, of the adjacency matrix will be zero.

But then vertex i contains no links to the other vertices. If i is 1 or n + 2, then

s and t are not connected directly or indirectly and the system never functions

irrespective of component state, so all components are irrelevant (Definition 2.5,

page 15) and the system is not coherent. If i is any other vertex, then the

component in question may be operational or failed and will have no impact on

any possible paths from s to t, so it is irrelevant. Therefore the system is not

coherent.

Similarly, if b
(x)
n+1 = 1, then when the adjacency matrix is created in step 2 this

will mean A1,n+2 = An+2,1 = 1. But then s and t are directly linked and the

system always functions irrespective of component state, so all components are

irrelevant and the system is not coherent.

Hence, rejection at step 1 =⇒ the system is not coherent. Thus, the contrapos-

itive holds: the system is coherent =⇒ step 1 will be passed.

2. Step 2 simply sets up the graph based on the adjacency matrix.

3. The algebraic connectivity of the graph is zero if and only if the graph is con-

nected. Thus, step 3 also pertains to component relevance: if the algebraic

connectivity is zero, then either s and t are in different connected components

(and the system never functions) and/or some component is not relevant because

it is not in the connected component containing s and t.
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4. Theorem 2.4 means all coherent systems of order n will pass step 4.

5. Step 5 simply eliminates isomorphic coherent systems so that there is no dupli-

cation when recording them in the final step. □

In terms of implementation, the non-trivial steps are 3 and 4.

Whether to pass step 3 can be determined by inspecting the second smallest eigen-

value of the Laplacian matrix of the graph, or alternatively by simply performing some

brute force exhaustive search from any initial node, say s.

Minimal cut set discovery can be achieved using Berry et al. (1999) (implemented

in Csárdi and Nepusz, 2006), which establishes all vertex separators of all vertex pairs,

then testing each set for (s, t) separation.

5.3 Coherent networks

The algorithm to catalogue all networks with a given number of nodes closely mirrors

Algorithm 5.1. However, coherency is now determined by link cut sets and equivalence

of networks equates to equivalence of graphs.

For clarity, when talking of a network with n nodes, this will be referred to as the

node order.

The following algorithm is a contribution of this thesis.

Algorithm 5.2 Let S be the (initially) empty collection of minimal cut set represen-

tations of coherent networks with node order n and G the collection of corresponding

graphs.

For all integer values x from 0 to 2((n+2)2−n−2)/2 − 1, perform the following steps:

1. Let b(x) be the n+ 2 dimensional binary vector representation of x. If
∑

i b
(x)
i <

n+ 1, or if b
(x)
n+1 = 1, proceed to the next value of x.

2. Create an (n+2)×(n+2) symmetric adjacency matrix, A, whose upper triangular

entries are filled row-wise by the binary representation of x.

A defines an undirected graph Gx(V,E). Label the first vertex s and the last

vertex t. In addition, ‘colour’ s and t black and ‘colour’ V \ {s, t} red, say.
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3. If the algebraic connectivity of the graph is zero, proceed to the next value of x.

4. Compute the collection Cx of all minimal (s, t) edge cut sets of Gx. If the union

of all sets in Cx does not equal E, proceed to the next value of x.

5. If there exists a coloured isomorphism from Gx to any member of the collection

G, proceed to the next value of x.

6. If this step is reached, add Cx to S and correspondingly Gx to G, then proceed to

the next value of x. □

Theorem 5.2 Algorithm 5.2 produces the cut-sets and network graph representations

of all coherent networks.

The full proof of this Theorem appreciably mirrors the proof of Theorem 5.1 due to

the essential duality between component/link failure. Step 5 is phrased in terms of

coloured isomorphisms because there is extensive existing literature on computational

methods to check for these. Indeed, it is implementation of steps 3, 4 and 5 which are

non-trivial.

Step 3 is as discussed for Algorithm 5.1.

Computation of the edge cut sets in step 4 has not been implemented in publicly

available R (R Core Team, 2012) code. The author therefore implemented Shin and

Koh (1998) which is available as a distinct utility function in Aslett (2012), and is a

contribution of this thesis.

The search for the isomorphisms of step 5 can be performed using Cordella et al.

(2001) (implemented in Csárdi and Nepusz, 2006).

It is important to note that the resultant signatures will be of varying dimension —

unlike for coherent systems — since for a fixed node order there are variable numbers

of links.

5.4 Representations and their signature

The author implemented both Algorithm 5.1 and Algorithm 5.2. These were used to

catalogue the network graphs, signatures and cut sets of varying orders of both simply

connected coherent systems and coherent networks.
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Number System Topology Signature

1 (1, 0)

2 (0, 1)

Table 5.1: All simply connected systems of order 2, together with system signature.

Contained in data set sccsO2 of ReliabilityTheory package (see §7.2.1, page 150).

The ordering of signatures is an interesting area of active research in its own right.

A variety of approaches including stochastic ordering, hazard rate ordering and like-

lihood ratio ordering are considered in Block et al. (2006). However, the necessary

and sufficient conditions for two systems to be comparable are not always met and

Samaniego (2007) explores the stochastic precedence ideas in Arcones et al. (2002) as

a possible alternative.

Here, for comparability a similar approach to that taken in the primary other sig-

nature cataloguing work (Navarro and Rubio, 2009) is taken, computing the expected

lifetimes when assuming independent and identically Exponentially distributed com-

ponent lifetimes. Since E[Yi:n] = λ−1
∑i

j=1 1/(n − j + 1) (Samaniego, 2007, p.105),

ordering is on Eτ [T ] =
∑n

i=1 siE[Yi:n].

5.4.1 Simply connected coherent system signatures

A contribution of this thesis is full cataloguing of the network graphs and signatures

of all simply connected coherent systems of order 2, 3, 4 and 5. Tables 5.1 to 5.3 show

orders 2 to 4, whilst the longer order 5 list is relegated to Appendix A, Table A.2.

It is interesting to note how many coherent systems are excluded by the simple

connectivity requirement:

• There is no change to the number of coherent systems of order 2.

• There is one less of order 3, down to 4 from 5.

• There are 9 fewer of order 4, down to 11 from 20.

• There are 145 fewer of order 5, down to 35 from 180.
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Number System Topology Signature

1 (1, 0, 0)

2
(
1
3
, 2
3
, 0
)

3
(
0, 2

3
, 1
3

)

4 (0, 0, 1)

Table 5.2: All simply connected systems of order 3, together with system signature.

Contained in data set sccsO3 of ReliabilityTheory package (see §7.2.1, page 150).

These reductions in the quantity of relevant systems will prove highly advantageous in

the next chapter.

5.4.2 Coherent network signatures

A contribution of this thesis is full cataloguing of the network graphs and signatures

of all coherent networks of node order 2 and 3. Tables 5.4 shows node order 2 coherent

networks, whilst node order 3 is in Appendix A, Table A.1.

5.5 Summary

This short chapter has clarified the connection between telecommunications networks

and those systems and networks to which they correspond in reliability theory. Al-

gorithms to enumerate these were provided and implemented, complete with their

signature. Although prosaic, these are important tools for the remainder of the thesis.
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Number System Topology Signature

1 (1, 0, 0, 0)

2
(
1
2
, 1
2
, 0, 0

)

3
(
1
4
, 7
12
, 1
6
, 0
)

4
(
1
4
, 1
4
, 1
2
, 0
)

5
(
0, 2

3
, 1
3
, 0
)

6
(
0, 1

2
, 1
2
, 0
)

7
(
0, 1

3
, 2
3
, 0
)

8
(
0, 1

2
, 1
4
, 1
4

)

9
(
0, 1

6
, 7
12
, 1
4

)

10
(
0, 0, 1

2
, 1
2

)

11 (0, 0, 0, 1)

Table 5.3: All simply connected systems of order 4, together with system signature.

Contained in data set sccsO4 of ReliabilityTheory package (see §7.2.1, page 150).
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Number Network Topology Signature

1 (1, 0, 0)

2
(
1
4
, 7
12
, 1
6
, 0
)

3
(
0, 2

3
, 1
3
, 0
)

4
(
0, 1

5
, 3
5
, 1
5
, 0
)

Table 5.4: All coherent networks of node order 2, together with system signature.

Black nodes are start/terminal. Contained in data set cnO2 of ReliabilityTheory package

(see §7.2.1, page 150).
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Chapter 6

Parametric and Topological

Inference with Masked Lifetime

Data

The literature on inference for masked system lifetime data is extensive, though inter-

estingly is heavily focused on specific structures (e.g. series/competing risk systems, see

Reiser et al. (1995) or Kuo and Yang (2000)), specific lifetime distributions (e.g. Expo-

nential, see G̊asemyr and Natvig (2001)) or does not focus on inferring the parameters

of the model (e.g. infer hazard, see Ng et al. (2012)).

Chapter 4 dealt with inference for Phase-type distributions, providing a very flexible

modelling option specifically for repairable systems when the data consists of masked

system lifetimes. The original objective for the continuation of the research was to

have a system composed of Phase-type distributed subsystems and push the ‘masking’

further: that is, where the ultimate failure time of only a whole system of repairable

subsystems is known. Initially, to simplify the problem the Phase-type subsystems are

only considered repairable up until their initial failure whereupon they remain failed.

However, the approach which was developed ultimately transpired to have more

general applicability. Therefore, in full generality this chapter considers the traditional

setting where repair of components in a system is not possible, and a novel signature

based data augmentation MCMC scheme is developed for performing Bayesian infer-

ence on parameters of the component lifetime distribution in the presence of masked

system lifetime data. Crucially, the proposed methodology works for arbitrary coherent
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system and network designs and arbitrary (but identical) component lifetime distribu-

tions. The signature has been used in inferential work before but not in this way, a

recent review of parametric work being Balakrishnan et al. (2012), and the first use of

signatures with nonparametric predictive inference recently in Coolen and Al-nefaiee

(2012).

Furthermore, the proposed methodology enables inference on the topology of the

system or network. A collection of candidate systems or networks is specified and

posterior probabilities of the structure being each member of the collection can be

obtained. This was the motivation for identifying particular structures consistent with

telecommunications networks in Chapter 5, along with associated signatures, as will

be seen in the sequel.

The chapter begins by formalising the setting of the problem to be addressed under

both independent and identically distributed (i.i.d.) and exchangeable systems assump-

tions. It continues by deriving the signature based data augmentation MCMC scheme

for inferring the parameters of the component lifetime distributions in masked life-

time data problems and then extends this to also inferring the topology of the system.

Finally, the results of some simple illustrative examples are presented.

6.1 The problem setting

The masked system lifetime data inferential problem is examined in two cases: that of

i.i.d. systems and that of exchangeable systems.

6.1.1 Independent systems

The usual route, given a system ϕ with structure function φ, is to establish the system

lifetime distribution, Fτ (·), via the reliability function, as in (2.3). Then, in principle

inference can follow naturally as described in §3.1:

fΨ | τ (ψ | t) ∝ L(ψ; t) fΨ(ψ)

where L(ψ; t) is the likelihood and fΨ(ψ) is the joint prior distribution. The complexity

of the likelihood can make this a non-trivial matter. In the i.i.d. case this is:

L(ψ; t) =
m∏
i=1

∂

∂t
Fτ (t;ψ)

∣∣∣∣
t=ti
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1 2

3

Figure 6.1: A simple 3 component system.

For example, consider the simple three component system in Figure 6.1. In this

instance:

φ(y) = 1− (1− y1y2)(1− y3)

=⇒ F̄τ (t) = 1− (1− F̄Y1(t)F̄Y2(t))(1− F̄Y3(t))

Thus, if the model is that components have Weibull distributed lifetimes, Yi
i.i.d.∼

Weibull(scale = α, shape = β), so that ψ = (α, β), a difficult likelihood can result:

L(α, β; t) =
m∏
i=1

t−1
i β(ti/α)

β exp
{
−3(ti/α)

β
} [

2 exp
{
(ti/α)

β
}
+ exp

{
2(ti/α)

β
}
− 3
]

which makes evaluation of the posterior fΨ | τ (α, β | t) very cumbersome. Indeed, in

modestly more complex situations than this, it may make evaluation of the normalis-

ing constant intractable. A Metropolis-Hastings algorithm could be used, but would

require careful tuning for every problem.

6.1.2 Exchangeable systems

Many models in the literature make the assumption of identically distributed systems

just described. Identical distribution of components within a system is a common mod-

elling assumption, since they are often exposed to a common environment. However,

assuming identical distribution at the system level is more questionable, since different

systems in the field may be subject to wildly different environmental conditions.

A second setting considered in this chapter is where only components within a single

system are assumed identically distributed, but systems themselves are considered

exchangeable. That is, the model considers systems to be conditionally independent

given the component lifetime parameters for components in each system. For example,

this corresponds to the hierarchical independence structure described in §3.1.5.

More precisely, suppose that components within system i follow a common lifetime

distribution FY (y;ψi), but where ψi ̸= ψj for i ̸= j, so that the parameters may vary
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Xij�i� Ti

j = 1, . . . , n

i = 1, . . . ,m

Figure 6.2: Graphical model representing exchangeable systems.

from system to system. The parameters are realisations from a population distribution

FΨ(ψ; θ). This is depicted in the graphical model in Figure 6.2.

Thus, interest now lies in θ, since this determines the distribution of the component

parameters random variable Ψ.

fΘ | τ (θ | t) = fΞ | τ (θ,ψ | t)/fΨ | τ (ψ | θ, t)

This then leads to a posterior predictive distribution for ψ (recall (3.7), page 39):

fΨ∗ | τ (ψ
∗ | t) =

∫
fΨ(ψ

∗; θ) fΘ | τ (θ | t) dθ (6.1)

Clearly this posterior would be substantially more complex than the independent sys-

tems model and an alternative approach to direct evaluation is required.

The following section details a novel methodology for achieving this.

6.2 Signature based MCMC algorithm

This section contains the majority of the major contributions in this chapter, where a

data augmentation based Markov chain Monte Carlo algorithm which makes novel use

of the system signature (see Definition 2.8, page 17) is developed.

6.2.1 Inferring component lifetime parameters

The first concern, given a system modelled via its component structure plus component

lifetime distributions, is to infer the parameters of the lifetime distributions in the

presence of masked system lifetime data.

First in the independent systems case, consider instead the simpler situation where

all component failure times are known, so that there are nm i.i.d. observations. Let

yij be the observed failure time of component j in system i. Let y = {y1·, . . . ,ym·}
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be the collection of all component failure times, where yi· = {yi1, . . . , yin} are the

component failure times for the ith system. As already implied, inference would then

be straightforward, since:

fΨ |Y (ψ |y) ∝ L(ψ;y) fΨ(ψ)

where now L(ψ;y) is just a product of simple component lifetime densities, rather than

of complex system lifetime densities. One might then choose fΨ(ψ) to be the conjugate

prior, leading to a well understood posterior density which can easily be plotted and

sampled from.

Given that inference with such ‘complete data’ is simple, the proposal is to introduce

the latent component lifetimes as variables and so develop MCMC algorithms which

are generally applicable. The schemes now presented fall under the Gibbs sampling via

data augmentation methodology, as discussed in §3.2.3. The problem to be solved, and

thus the novel aspect of the data augmentation scheme, is specifically how to perform

such augmented sampling in this reliability setting.

To be precise, in the independent model MCMC samples are generated from the

natural completion of the posterior distribution:

fΨ,Y | τ (ψ,y1·, . . . ,ym· | t)

by blocked Gibbs sampling using the two full conditional distributions which fully

define it (by the Hammersley-Clifford Theorem, page 49):

fY |Ψ,τ (y1·, . . . ,ym· |ψ, t) (6.2)

fΨ |Y,τ (ψ |y1·, . . . ,ym·, t) (6.3)

Likewise in the case of the exchangeable model with parameters Ξ = (Θ,Ψ), the

joint distribution which is the natural completion of the posterior is:

fΞ,Y | τ (θ, ψ1, . . . , ψm,y1·, . . . ,ym· | t)

for which blocked Gibbs sampling can be performed, using the two full conditional

distributions which fully define it:

fY |Ξ,τ (y1·, . . . ,ym· | θ, ψ1, . . . , ψm, t) (6.4)

fΞ |Y,τ (θ, ψ1, . . . , ψm |y1·, . . . ,ym·, t) (6.5)
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In this particular application, sampling from (6.3) and (6.5) is a well understood

problem for common component lifetime distributions: it is standard Bayesian infer-

ence, since ψ is conditionally independent of t given all component failure times. In

particular, note that if the ‘components’ are Phase-type repairable subsystems then

the contributions of the previous chapter provides the necessary methodology.

However, sampling from (6.2) and (6.4) is the key step which is solved in the sequel

with Algorithm 6.1.

Note that in (6.4),

fY |Ξ,τ (y1·, . . . ,ym· | θ, ψ1, . . . , ψm, t) = fY |Ψ,τ (y1·, . . . ,ym· |ψ1, . . . , ψm, t)

since in the presence of ψi the component failure times are conditionally independent

of θ.

6.2.1.1 Sampling Latent Component Failure Times

Sampling the latent component failure times is the crucial step in being able to imple-

ment the data augmented Gibbs sampling scheme just proposed in order to perform

Bayesian inference for masked system lifetime data. The approach advocated depends

on the signature of the system, as described in Definition 2.8, page 17. Recall the

signature of the system is the probability vector s with elements:

si = P(τ = Ti:n)

There are two scenarios: firstly, when each system is independent, we can consider

separately each vector of failure times fY |Ψ,τ (yi· |ψ, ti); and, secondly when each system

is exchangeable, meaning system i is conditionally independent of the other systems

given its lifetime distribution parameter ψi, we can consider separately each vector of

failure times: fY |Ψ,τ (yi· |ψi, ti). Therefore, when writing ψ hereinafter, it is meant as

appropriate in the context of independence or exchangeability.

The core result which makes the data augmentation algorithm feasible is the state-

ment and proof of the following Lemma which is a contribution of this thesis.

Lemma 6.1 Consider a coherent system with signature s = (s1, . . . , sn), consisting

of components with lifetime distribution FY ( · ;ψ). Then, conditioning on the system
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failure time t, the lifetime density of the components is:

fY | τ (yi1, . . . , yin;ψ | t)

∝
n∑
j=1

[
fY |Y <t(yi(1), . . . , yi(j−1);ψ) fY |Y >t(yi(j+1), . . . , yi(n);ψ) I{t}(yi(j))

×
(
n− 1

j − 1

)
FY (t;ψ)

j F̄Y (t;ψ)
n−j+1 sj

]
Proof: Since these are assumed to be coherent systems, the failure of a system must

coincide with the failure of one of the components, meaning yij = ti for some j, and

the remaining components of that system failed either before or after ti.

fY | τ (yi1, . . . , yin;ψ | τ = t)

=
n∑
j=1

fY | τ (yi1, . . . , yin, τ = Yj:n;ψ | τ = t)

=
n∑
j=1

fY | τ (yi1, . . . , yin;ψ | τ = t = Yj:n)P(τ = Yj:n |ψ, τ = t)

=
n∑
j=1

[
fY |Y <t(yi(1), . . . , yi(j−1);ψ) fY |Y >t(yi(j+1), . . . , yi(n);ψ) I{t}(yi(j))

× P(τ = Yj:n |ψ, τ = t)

]
This means that the component failure times are from a mixture distribution. More-

over, the weights have a tractable form:

P(τ = Yj:n |ψ, τ = t) ∝ P(τ = t | τ = Yj:n, ψ)P(τ = Yi:n |ψ)

= P(τ = t | τ = Yj:n, ψ)P(τ = Yi:n)

=

(
n− 1

j − 1

)
FY (t;ψ)

j F̄Y (t;ψ)
n−j+1 sj (6.6)

as required. □

Thus, the system signature enables determination of how many of the remaining

components failed before and how many after ti, via the mixing probabilities (6.6). The

probability densities which are mixed are trivial to sample from so long as the left and

right censored conditional distributions of the component lifetime distributions are.

This leads to the following algorithm to simulate the latent component failure times.
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Algorithm 6.1 (Signature based data augmentation) For each of the systems

i = 1, . . . ,m:

1. Sample j ∈ {1, . . . , n} from the discrete probability distribution

P(j) ∝
(
n− 1

j − 1

)
FY (ti;ψ)

j F̄Y (ti;ψ)
n−j+1 sj

This samples the order statistic indicating that the jth component failure caused

system failure.

2. Sample:

• j−1 values, yi1, . . . , yi(j−1), from FY |Y <ti( · ;ψ), the distribution of the com-

ponent lifetime conditional on failure before ti

• n−j values, yi(j+1), . . . , yin, from FY |Y >ti( · ;ψ), the distribution of the com-

ponent lifetime conditional on failure after ti

and set yij = ti.

Each iteration provides yi· and together the mn values y·· comprise y. □

That is, the preceding algorithm can be used to perform (6.2) and (6.4) so long as

simulation from the censored conditional distributions is tractable. In principle, the

finite support of FY |Y <ti( · ;ψ) means it should always be relatively straightforward

to sample, since ARMS (Gilks et al., 1995) is very effective for finitely supported

univariate distributions. FY |Y >ti( · ;ψ) will require more care, but in the worst case

simple rejection sampling is in principle an option.

In summary, if the state space is augmented with component failure times, then

inference on the rate parameters is trivial and Algorithm 6.1 provides the means

of simulating the augmented data. The resulting chain will be vectors of samples

(ψ,y1·, . . . ,ym·) which can then be used for estimation of quantities of interest related

to the posterior distribution as with any MCMC sample.

6.2.2 Topological inference

Thus far, the discussion has implicitly assumed that the topology of the system/net-

work in question is known. However, by introducing the signature into the inferential
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Signature repetition

Type Order Unique 2 3 4 5 6 7 Total

Coherent systems

2 2 0 0 0 0 0 0 2

3 5 0 0 0 0 0 0 5

4 14 3 0 0 0 0 0 20

5 43 15 2 6 2 10 1 180

2 2 0 0 0 0 0 0 2

Simply connected 3 4 0 0 0 0 0 0 4

coherent systems 4 11 0 0 0 0 0 0 11

5 27 4 0 0 0 0 0 35

Table 6.1: Uniqueness of signatures for coherent systems.

procedure it becomes possible to treat the internal structure as unknown and jointly

incorporate it into the inference. Thus, in this subsection the assumption is weakened:

that is, the connectivity is unknown, save for assuming the connectivity is such that it

is a (possibly simply connected) coherent system/network.

There is not necessarily a bijective mapping between signature and topology, but

the signature does identify small subsets of topologies. For example, there are 20

unique topologies of systems of order 4, each with a signature. However, only 17 of

the 20 signatures are distinct, so successfully identifying the correct signature will in

most (but not all) cases identify the topology. When interest is in telecommunications

networks (as discussed in Chapter 5), the situation is improved because there are fewer

non-unique signatures in the simply connected case, as illustrated in Table 6.1.

The first choice to be made is what collection of topologies, M, are of interest.

Indeed, Chapter 5 was motivated by the desire to restrict the topologies under consid-

eration (even if, say, a k-out-of-n system was inferentially credible):

“Unless there is good reason otherwise, models should obey natural or known

constraints even if these lie outside the range of the data.”

— Cox and Connelly (2011, p.110)

For example, one may know a priori that there are 4 components and that it is a

simply connected system since it represents a communications ‘network’, meaning M
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consists of Table 5.3. Alternatively, one may choose to assume simply that there are 5

components or fewer and that it is just a coherent system, in which case M consists

of all signature results in Shaked and Suarez-Llorens (2003) and Navarro and Rubio

(2009). Finally, it is not restricted to systems: one may know a priori there are 3

nodes, but that link failure is of interest so that M consists of the coherent networks

of Table A.1. This collection will be considered indexed by the element number, j.

With the collection of topologies of interest, M, decided, the posterior becomes:

fM,Ξ,Y | τ (Mj, θ,ψ,y | t)

One might initially propose simply extending the simple Gibbs sampler to a systematic

or random scan Gibbs sampler (page 47) between the full conditionals:

fY |M,Ξ,τ (y1·, . . . ,ym· |Mj, θ, ψ1, . . . , ψm, t) (6.7)

fΞ |M,Y,τ (θ, ψ1, . . . , ψm |Mj,y1·, . . . ,ym·, t) (6.8)

fM|Ξ,Y,τ (Mj | θ, ψ1, . . . , ψm,y1·, . . . ,ym·, t) (6.9)

where (6.7) and (6.8) are effectively unchanged from the discussion above, except that

the signature involved may vary on each iteration. However, an obvious problem is

that (6.9) would experience extremely poor mixing. To see this, consider the situation

where the chain is started with topology Mj of a purely parallel system. Now only

those systems with signature such that sn > 0 can be proposed. Should a move to

one of those topologies occur (where necessarily sn < 1), (6.7) will then likely produce

simulations of yi· st ∃ i, yin ̸= ti, making a subsequent move back to a parallel topology

impossible.

Much more seriously, this also draws attention to the fact that the positivity condi-

tion (Definition 3.5, page 48) is not satisfied. Thus the Hammersley-Clifford Theorem

does not hold and the full conditionals are not necessarily adequate to describe the

joint distribution of interest. Indeed, not considering the positivity condition is one of

the most common pitfalls when using Gibbs samplers (Robert and Casella, 2011).

The problem can be avoided by using the following full conditionals instead:

fM,Y |Ξ,τ (Mj,y1·, . . . ,ym· | θ, ψ1, . . . , ψm, t) (6.10)

fΞ |M,Y,τ (θ, ψ1, . . . , ψm |Mj,y1·, . . . ,ym·, t) (6.11)
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since the block marginals are concordant with positivity.

A natural choice for sampling (6.10) is to sequentially sample:

fM|Ξ,τ (Mj | θ, ψ1, . . . , ψm, t) (6.12)

fY |M,Ξ,τ (y1·, . . . ,ym· |Mj, θ, ψ1, . . . , ψm, t) (6.13)

(6.13) is again unchanged from the previous discussion, except that the signature may

vary on each iteration. Note that (6.12) can be written:

fM|Ξ,τ (Mj | θ, ψ1, . . . , ψm, t) = fM|Ψ,τ (Mj |ψ1, . . . , ψm, t)

∝ fτ |Ψ,M(t |ψ,Mj) fΨ |M(ψ |Mj) fM(Mj)

∝

{
m∏
i=1

fτ |Ψ,M(ti |ψi,Mj)

}
fM(Mj)

since the component/link lifetime parameters ψ are unaffected by the particular topol-

ogy in which they are laid out1. The term fτ |Ψ,M(ti |ψi,Mj) is computed using (2.7) in

Corollary 2.6, page 18, for absolutely continuous component/link lifetime distributions.

The term fM(Mj) is the prior probability of topology j.

When the candidate collection of topologies is not too large, this discrete probability

mass function can be trivially sampled directly. In the event the collection is very large,

it is possible to perform Metropolis-Hastings sampling to avoid having to compute the

above for all topologies in order to find the normalising constant — in this instance, if

a non-uniform proposal is used then the ordering of elements of M alluded to in §5.4

becomes an issue of serious interest.

6.2.3 Summary of the MCMC algorithm

For clarity, the above discussion is now crystallised into the following algorithm which

summarises how to proceed, and is a contribution of this thesis.

Algorithm 6.2 (MCMC for masked lifetime data) Before commencing the

algorithm, the following prerequisites are required:

(i) A collection M of candidate system/network signatures and a discrete prior dis-

tribution FM(·) on the elements of the collection. If topological inference is not

required, this collection may contain just one signature vector.

1This is a simplifying assumption: there are naturally situations where it is conceivable that
topology could impact lifetime parameters.
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(ii) A component lifetime distribution FY ( · ;ψi), a prior on the exchangeable popula-

tion of system/network parameter(s) of that distribution FΨ(ψi; θ) and a hyper-

prior FΘ(·).

(iii) A means of performing standard Bayesian inference with the component lifetime

distribution.

(iv) A method of sampling from FY |Y <t( · ;ψ) and FY |Y >t( · ;ψ) ∀ t ∈ [0,∞).

The following steps should be iterated as many times as required to bring the MCMC

standard error of the functional of interest to an acceptable level. Before starting,

specify starting values for ψ, perhaps as random draws from FΨ(·)

1. If the collection M contains more than one signature, then draw a signature,

Mj, from the discrete probability mass function:

fM|Ξ,τ (Mj | θ, ψ1, . . . , ψm, t) ∝

{
m∏
i=1

fτ |Ψ,M(ti |ψi,Mj)

}
fM(Mj)

Otherwise take Mj as the singleton element.

2. Using Algorithm 6.1, sample from fY |Ψ,τ,M(yi· |ψi, ti,Mj) for each observation

i, until the full vector y of augmented component lifetimes is simulated.

3. Perform standard Bayesian inference to sample updated parameter values from:

fΞ |Y (θ, ψ1, . . . , ψm |y1·, . . . ,ym·)

and then loop to step 1. □

It is important to note that if the method used in step 3 allows a jump to any part

of the parameter space then by Lemma 3.4 the MCMC algorithm is Harris ergodic.

The algorithm above is for the exchangeable systems case, the independent case

being a trivial simplification.

6.3 Examples

The generality of this approach means that some clarity will be afforded by a few

thoroughly worked examples. The most lucid exposition is provided first with the
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canonical reliability example of Exponentially distributed components for both i.i.d.

and exchangeable systems. Then the full generality of the approach is established in

the final examples where components are Phase-type distributed for both i.i.d. and

exchangeable systems, also providing a highly pertinent link between this portion of

the thesis and Chapter 4. Indeed, the exchangeable systems example provides a direct

extension of the work in Chapter 4.

The broad applicability of the signature based MCMC scheme developed here means

that the details of implementation — that is fulfilment of prerequisites (i)–(iv) of

Algorithm 6.2 — for each of these examples also form contributions of this thesis.

6.3.1 IID systems with Exponential components

6.3.1.1 Model set-up

The component lifetime distributions here are taken to be Exponential(λ), so that

ψ = (λ) and FY (y) = 1− e−λy. Availing of the conjugacy result on page 36 of §3.1.2, a

Gamma(shape=ν, scale=1/ζ) prior for λ is taken, so that one may immediately write

down:

λ |y ∼ Gamma(shape = ν + nm, scale = 1/(ζ + nmȳ))

where n is the order of the system/network andm is the number of masked system/net-

work lifetimes observed. This satisfies prerequisites (ii) and (iii) of Algorithm 6.2.

Additionally, it is not difficult to derive:

FY |Y <t(y;λ) =


0 y < 0

1− e−λy

1− e−λt
0 < y < t

1 y > t

FY |Y >t(y;λ) =

 0 y < t

1− eλ(y−t) y > t

so that one may generate random realisations of Y |Y < t as:

y = −λ−1 log[U(e−λt − 1) + 1] where U ∼ Uniform(0, 1)

and, random realisations of Y |Y > t as:

y = L+ t where L ∼ Exponential(λ)
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by the memoryless nature of the Exponential. This satisfies prerequisites (iv) of Algo-

rithm 6.2.

The set of signatures to be considered is the only thing remaining to be specified,

together with a prior on the collection, FM(·). In all the examples to be presented

here, FM(·) is simply taken to be a discrete uniform over the collection of signatures

in question.

6.3.1.2 Parametric inference only

In the first instance, the structure of the system/network is assumed known and only

the parameter inferred. A ground truth of λ = 3.14 was chosen and 50×4 Exponential

random draws simulated to represent component failure times. For each of the 11

simply connected coherent systems of order 4, there were 50 order values, {1, . . . , 4},

drawn according to the signature of each system. Then, using the component failure

times and order values, 50 system lifetimes were generated for each simply connected

coherent system of order 4.

Finally, this was used as the data in 11 separate MCMC runs as outlined in the

previous section, with prior parameters ν = 9, ζ = 2. The resultant posterior of λ is

shown in Figure 6.3 for each of the systems. Autocorrelation in these simple examples

was low so only 2, 000 iterations were required to reduce the MCMC standard error

enough to provide between one and two decimal places accuracy in the upper/lower

95% quantiles. In most instances, the results are satisfactory.

6.3.1.3 Parametric and topological inference

The Exponentially distributed i.i.d. component set-up was used again, this time the

topology also being considered unknown. 50 masked system lifetimes were simulated

from topology number 3 in Table 5.3, page 112, and the whole of that table was taken

as the collection of candidate topologies, M. A slightly more informative prior with

ν = 6, ζ = 2 was used and 10, 000 MCMC iterations drawn, sufficient to provide over

2, 000 iterations in each of the two highest a posteriori topologies.

Figure 6.4 shows the results. The histogram is the marginal posterior density of

the topologies, whilst the box plots are the posterior of the rate parameter conditional

on the given topology.
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Figure 6.3: Boxplot for posterior simulations for each of 11 different simply connected

coherent system from known ground truth, λ = 3.14. Solid horizontal line shows ground

truth.
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Figure 6.4: Marginal topology posterior and conditional parameter posteriors, for the

ground truth topology being order 4 simply connected coherent system number 3 with

λ = 3.14. M consisted of all 11 order 4 simply connected coherent systems. Low or

zero probability topologies suppressed. Solid lines show ground truth.
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This arrangement was explored for other ground truth topologies and the highest

a posteriori topology was predominantly correct, though sometimes slipping to second

or third highest a posteriori. Anecdotally, in the author’s tests it seemed that the

closer to pure series or parallel the more accurate the inference appeared to be, with

the systems in the middle of Table 5.3 being more frequently mixed up. This appears

to be logical, since one would expect the differences between lifetimes of the systems

with quite similar signatures will be smaller. However, for an order of magnitude more

observations the posterior appeared to be asymptotically approaching the ground truth

topologies.

The state of affairs becomes less clear as the size of the candidate set M increases.

Including all systems in Tables 5.1, 5.2, 5.3 and A.2 results in a candidate collection of

52 topologies. High relative weight of probability for the true topology was common,

but the prevalence of the actual highest a posteriori topology being correct was greatly

diminished. An example of this limitation can be seen when taking exactly the same

simulated data with the larger collection of 52 topologies, the results being shown in

Figure 6.5 — only the topologies with marginal posterior probability exceeding 0.04 are

shown. Although the posterior is less satisfactory, it must be borne in mind that this

is a large collection of topologies and there are only 50 masked lifetime observations,

so the successful restriction to this subset of topologies is an encouraging outcome.

It is interesting to note that the Exponential distribution could arguably be among

the harder distributions to consider in this situation, because as noted in the footnote on

page 24 the minimum of a collection of Exponential random variables is Exponentially

distributed. Consequently, it is likely to be harder to distinguish parts of the system

which are in series from a single component.

6.3.2 Exchangeable systems with Exponential components

6.3.2.1 Model set-up

The setting is similar to the previous subsection. Components within systems are in-

dependent and identically Exponentially distributed. However, the weaker assumption

of exchangeability is made at the system level: the failure rate of components may vary

between systems according to a common population distribution. Hierarchically, this
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Figure 6.5: Marginal topology posterior and conditional parameter posteriors, for the

ground truth topology being order 4 simply connected coherent system number 3 with

λ = 3.14. M consisted of all 52 order 2, 3, 4 and 5 simply connected coherent systems.

Topologies with posterior probability below 0.04 suppressed. Solid lines show ground

truth.
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is initially tackled as:

Y |λ ∼ Exponential(λ)

λ | ν, ζ ∼ Gamma(shape = ν, scale = ζ)

ν ∼ Log-Normal(µν , σν)

ζ ∼ Log-Normal(µζ , σζ)

which fulfils prerequisite (ii) of the specification in the algorithm. Prerequisite (iii) is

a little more involved. It is necessary to sample from:

fΞ |Y (ν, ζ, λ1, . . . , λm |y1·, . . . ,ym·)

This is achieved by sampling first from fΘ |Y (ν, ζ |y) and then from fΨ |Θ,Y (λ | ν, ζ,y).

The latter has a nice conjugate form for each conditionally independent component of

λ, but the former requires some work:

fΘ |Y (ν, ζ |y) =
∫

· · ·
∫
fΞ |Y (ν, ζ,λ |y) dλ1 . . . dλm

∝
∫

· · ·
∫
fΞ,Y (ν, ζ,λ,y) dλ1 . . . dλm

=

∫
· · ·
∫
fΘ(ν, ζ) fΨ |Θ(λ | ν, ζ) fY |Ψ(y |λ) dλ1 . . . dλm

=
m∏
i=1

[∫
fΨ |Θ,Y (λi | ν, ζ,yi·) dλi

]
fΘ(ν, ζ)

∝
m∏
i=1

[∫
(Γ(ν)ζν)−1λn+ν−1

i exp

{
−λi

(
ζ−1 +

n∑
j=1

yij

)}
dλi

]
fΘ(ν, ζ)

=
m∏
i=1

[
Γ(ν + n)

ζν(ζ−1 +
∑n

j=1 yij)
ν+n Γ(ν)

]
fΘ(ν, ζ)

=⇒ log fΘ |Y (ν, ζ |y) ∝ −mν log ζ +m log Γ(ν + n)−m log Γ(ν)− (µν − log ν)2

2σ2
ν

− log ν − (µζ − log ζ)2

2σ2
ζ

− log ζ − (ν + n)
m∑
i=1

log

(
ζ−1 +

n∑
j=1

yij

)

It is now possible, in principle, to sample from log fΘ |Y (ν, ζ |y). However, the

form above does not lend itself to easy sampling due to the shape the density may

sometimes take. For example, Figure 6.6 (left plot) shows a diagnostic output with

a distinctive banana shaped density. The following reparameterisation improves the

sampling considerably in conjunction with a change to Log-Normal priors on the mean
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Figure 6.6: Diagnostic plots of log fΘ |Y (ν, ζ |y) before (left) and after (right) repa-

rameterisation.

and variance (denoted by just σ for convenience) of the Gamma, which has the added

advantage of being more intuitive to define than that on the shape and scale. Thus:

µ = νζ σ = νζ2

=⇒ ν =
µ2

σ
ζ =

σ

µ

=⇒ |J | =

∣∣∣∣∣∣∣∣
∂
∂µ

(
µ2

σ

)
∂
∂σ

(
µ2

σ

)
∂
∂µ

(
σ
µ

)
∂
∂σ

(
σ
µ

)
∣∣∣∣∣∣∣∣ =

1

σ

Consequently, taking hyperpriors on the mean and variance of the Gamma prior:

µ ∼ Log-Normal(µµ, σµ)

σ ∼ Log-Normal(µσ, σσ)

=⇒ log fΘ |Y (µ, σ |y) ∝ −mµ2σ−1 log(µ−1σ) +m log Γ(µ2σ−1 + n)−m log Γ(µ2σ−1)

− (µµ − log µ)2

2σ2
µ

− log µ− (µσ − log σ)2

2σ2
σ

− log σ

− (µ2σ−1 + n)
m∑
i=1

log

(
µσ−1 +

n∑
j=1

yij

)
− log σ

An importance sampling regime was tried but exhibited poor tail characteristics.

A random-walk Metropolis-Hastings scheme (see page 46) with covariance matrix de-

termined by the Hessian at the mode (numerically estimated) provided good results

requiring few iterations. This being so, prerequisite (iii) of the algorithm is provided.

Finally, prerequisite (iv) will be exactly the same as the previous i.i.d. example, but

with the rate varying for each system.
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Figure 6.7: Ground truth, prior predictive and posterior predictive densities for the

exchangeable population density of λ.

6.3.2.2 Parametric inference only

Initially the structure of the system/network is assumed known again. With this

Exponential exchangeable example, a natural way of investigating how well the method

performs for a known ground truth is to compare the posterior predictive distribution

(as per (6.1)) of λ to the true exchangeable population distribution of λ.

A ground truth of λ ∼ Gamma(shape = 9, scale = 0.5) was taken and 100 masked

system lifetimes generated for order 4 simply connected coherent system number 3

(see Table 5.3). The hyper prior parameters were taken as µµ = 1, σµ = 0.5 (giving

Log-Normal hyperprior with mean of ≈ 3.5 and variance ≈ 2.7) and µσ = 1, σσ = 0.7

(giving Log-Normal hyperprior with mean of ≈ 3.9 and variance ≈ 7.6).

The result of an MCMC run of length 20, 000 is shown in Figure 6.7. This shows

the grievously incorrect prior predictive has been updated to achieve encouraging lev-

els of agreement in the posterior predictive, although it is slightly under-dispersed in

this instance. Given only 50 observations though, failure to capture tail behaviour is

somewhat unremarkable.

6.3.2.3 Parametric and topological inference

Again the problem was extended to demonstrate inferring both topology and param-

eters. In both examples which follow, 100 observations were used and slightly more

informative hyperpriors (µµ = 1.2, σµ = 0.2, µσ = 0.8, σσ = 0.2). 20, 000 MCMC

iterations were performed.
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Figure 6.8: Topology posterior for ground truth system 3. M consisted of all 11 order

4 simply connected coherent systems. Low or zero probability topologies suppressed.
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Figure 6.9: Topology posterior for ground truth network 7. M consisted of all 24

node order 3 coherent networks. Zero probability topologies suppressed.

For comparability with the i.i.d. case, the inference over the candidate collection

of all order 4 simply connected coherent systems with ground truth of system 3 was

performed. The results of this are in Figure 6.8. The posterior predictive density for λ

conditional on system 3 was in even closer agreement than Figure 6.7 and is therefore

not plotted separately.

By way of variety and to show the application to coherent networks, a second

example with ground truth of coherent network number 7 from Table A.1 was used,

with candidate collection of all node order 3 coherent networks. Mirroring the i.i.d.

situation, the larger candidate collection clearly affected the accuracy of the inference,

the results being visible in Figure 6.9. While identifiability is clearly an issue, there

was success in reducing the plausible candidate set of networks considerably from the

initial 24.
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6.3.3 IID systems with Phase-type components

6.3.3.1 Model set-up

The generality of the technique is realised when considering the components or nodes

to have a Phase-type lifetime distribution. There are two ways to view such a setting:

either as components being repairable systems themselves (up to initial failure), as per

discussion in §2.2.2 and the developments of Chapter 4; or simply using Phase-types

as a highly flexible lifetime distribution, since they are theoretically dense in the space

of all distributions on [0,∞) (Asmussen, 2000).

With the material presented thus far, the prerequisites of Algorithm 6.2 are easily

addressed. Prerequisite (ii) sees the lifetime distribution being Phase-type with collec-

tion of parameters λ1, . . . , λm, each having Gamma prior as set out fully in §4.2.1. The

base methodology of Bladt et al. (2003) together with all of the advances of Chapter 4

provide the means of performing Bayesian inference called for by prerequisite (iii).

The sampling required by prerequisite (iv) can be handled easily. Algorithm 4.2,

page 89, provides a computationally attractive means of sampling Y |Y > t, whilst due

to the finite support a simple technique such as ARMS (Gilks et al., 1995) can be used

to sample Y |Y < t. If found necessary in some application not encountered here, an

analogue of Algorithm 4.2 could be developed, but the performance was adequate in

all the examples tried during development of this approach.

Having carefully shown the variety of results for the simple Exponential examples,

the general case is handled straight away here.

6.3.3.2 Parametric and topological inference for simply connected systems

Exactly the same prior specification was used as in §4.3.1, page 90. 100, 000 MCMC

iterations were run, with 75 MCMC iterations of the inner Phase-type MCMC (Chapter

4) on each iteration. Figure 6.10 shows the results of this.

It is particularly interesting to note that the difficulty in learning the repair rate

results in posteriors which are essentially the same for this parameter across all topolo-

gies. The closest to ground truth for the failure rate is in the true system and, as

may be expected, the highest a posteriori topology has decreased failure rate posterior

offsetting the overestimated repair rate. Thus, although the true topology does well,
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Figure 6.10: Marginal topology posterior and conditional parameter posteriors, for

the ground truth topology being order 4 simply connected coherent system number 3

with λf = 1.8 and λr = 9.5. M consisted of all 52 order 2, 3, 4 and 5 simply connected

coherent systems. Only topologies with posterior probability > 0.04 shown. Solid lines

show ground truth.
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ranked 4th from 52 candidate systems, it appears that a sound prior knowledge of the

repair rate is more important to accurately inferring the topology than it is to accu-

rately inferring the failure rate, which is intuitively logical given the weak learning of

repair rates discussed in Chapter 4.

6.3.4 Exchangeable systems with Phase-type components

6.3.4.1 Model set-up

The fullest generality of the method presented is realised in the final example, where

the independence of systems assumption is replaced by exchangeability.

There is some work to be done before implementation is possible, although a great

deal of the work of Chapter 4 applies. The ideas from the exchangeable system Expo-

nential component lifetime example are useful. Given that the elements of the generator

G are all 0 or λi for some i (as in §4.2.1) then hierarchically this problem is initially

tackled as:

Y |λ = (λ1, . . . , λl) ∼ PHT(π,G)

λi | νi, ζi ∼ Gamma(shape = νi, scale = 1/ζi)

νi ∼ Log-Normal(µνi , σνi)

ζi ∼ Log-Normal(µζi , σζi)

That is, if using the Phase-type to model a repairable subsystem then λ = (λf , λr) and

there are two Gamma priors, with four Log-Normal hyper-priors. However, the devel-

opment here is completely general in case one merely wishes to exploit the flexibility

of Phase-type distributions, rather than impose a repairable subsystem interpretation.

This fulfils prerequisite (ii) of the specification in the algorithm.

For prerequisite (iii), one must sample from the posterior:

fΞ |Y (ν, ζ,λ1·, . . . ,λm· |y1·, . . . ,ym·)

where ν = (ν1, . . . , νl), ζ = (ζ1, . . . , ζl) and λi· is the vector of l rate parameters for

system i.

This may be tackled using much of the machinery of Chapter 4, though some simple

changes are required. First, note that yij is the failure time of ‘component’ j in system

137



i, but where each ‘component’ is now itself a repairable subsystem (or general Phase-

type). Therefore, for clarity, hereinafter these are called nodes. Thus, let ϕij be the

latent processes of node j in system i. This means that the data augmentation scheme

of Chapter 4 is adapted for sampling the natural completion:

fΞ,Φ |Y (ν, ζ,λ1·, . . . ,λm·,ϕ1·, . . . ,ϕm· |y1·, . . . ,ym·)

This involves using Exact Conditional Sampling (Algorithm 4.1) entirely unchanged

to sample:

fΦ |Ψ,Y (ϕij |λi·, yij)

for each i, j. Then, some additional work is required to sample the parameters in the

data augmentation scheme:

fΞ |Φ(ν, ζ,λ1·, . . . ,λm· |ϕ1·, . . . ,ϕm·)

A similar strategy to that taken for sampling in the exchangeable Exponential case

can be taken, where the exchangeable distribution parameters are sampled marginally

first, followed by the model parameters conditionally. The detail differs subtly, so must

be re-derived carefully as follows.

Recall that the latent process enters the likelihood only via the sufficient statistics

of the chain: N and z. As shown in §4.2.1, these reduce to N∗
k and z∗k for each param-

eter λk. With differing parameters due to system exchangeability, this is notationally

extended to N∗
ik and z∗ik for the sufficient statistics of the latent processes of the nodes

in system i for parameter λik. Armed with this notation:

fΞ |Φ(ν, ζ,λ1·, . . . ,λm· |ϕ1·, . . . ,ϕm·)

∝ fΦ |Ψ(ϕ1·, . . . ,ϕm· |λ1·, . . . ,λm·) fΨ |Θ(λ1·, . . . ,λm· |ν, ζ) fΘ(ν, ζ)

∝
m∏
i=1

[
l∏

k=1

λ
N∗

ik
ik exp(−λikz∗ik)

]
m∏
i=1

[
l∏

k=1

ζνkk λ
νk−1
ik

Γ(νk)
exp(−ζkλik)

]
fΘ(ν, ζ)

∝
m∏
i=1

[
l∏

k=1

ζνkk λ
N∗

ik+νk−1

ik

Γ(νk)
exp(−(z∗ik + ζk)λik)

]
fΘ(ν, ζ)
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Thus, marginally:

fΘ |Φ(ν, ζ |ϕ) =
∫

· · ·
∫
fΞ |Φ(ν, ζ,λ1·, . . . ,λm· |ϕ) dλ11 . . . dλml

∝
l∏

k=1

[
fΘ(νk, ζk)

m∏
i=1

∫
ζνkk λ

N∗
ik+νk−1

ik

Γ(νk)
exp(−(z∗ik + ζk)λik) dλik

]

=
l∏

k=1

[
fΘ(νk, ζk)

m∏
i=1

ζνkk Γ(N∗
ik + νk)

Γ(νk) (z∗ik + ζk)N
∗
ik+νk

]

Implying that each pair (νk, ζk) has marginal log posterior:

log fΘ |Φ(νk, ζk |ϕ) ∝ mνk log ζk −m log Γ(νk)

+
m∑
i=1

[log Γ(N∗
ik + νk)− (N∗

ik + νk) log(z
∗
ik + ζk)]

− (µνk − log νk)
2

2σ2
νk

− log νk −
(µζk − log ζk)

2

2σ2
ζk

− log ζk

However, in practice it again seemed prudent to transform to the mean and variance,

as per the previous exchangeable example:

µk =
νk
ζk

σk =
νk
ζ2k

=⇒ νk =
µ2
k

σk
ζk =

µk
σk

=⇒ |J | =

∣∣∣∣∣∣∣∣
∂
∂µk

(
µ2k
σk

)
∂
∂σk

(
µ2k
σk

)
∂
∂µk

(
µk
σk

)
∂
∂σk

(
µk
σk

)
∣∣∣∣∣∣∣∣ =

∣∣∣∣−µ2
k

σ3
k

∣∣∣∣ = µ2
k

σ3
k

Consequently, taking hyperpriors on the mean and variance (denoted by σk for conve-

nience) of the Gamma prior:

µk ∼ Log-Normal(µµk , σµk)

σk ∼ Log-Normal(µσk , σσk)

=⇒ log fΘ |Φ(µk, σk |ϕ) ∝ mµ2
kσ

−1
k log(µkσ

−1
k )−m log Γ(µ2

kσ
−1
k )

+
m∑
i=1

[
log Γ(N∗

ik + µ2
kσ

−1
k )− (N∗

ik + µ2
kσ

−1
k ) log(z∗ik + µkσ

−1
k )
]

− (µµk − log µk)
2

2σ2
µk

− log µk −
(µσk − log σk)

2

2σ2
σk

− log σk

+ 2 log µk − 3 log σk
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Figure 6.11: Ground truth, prior predictive and posterior predictive densities for the

exchangeable population density of λf and λr.

Sampling is again by a random-walk Metropolis-Hastings scheme (see page 46) with

covariance matrix determined by the Hessian at the mode (numerically estimated).

Consequently, the bulk of Chapter 4 still applies, the difference being that instead

of just simple draws from a conjugate Gamma distribution on each iteration, there is

the additional step of sampling ν and ζ first. This provides prerequisite (iii) of the

algorithm.

Finally, prerequisite (iv) will be exactly the same as the i.i.d. Phase-type example,

but with the generator varying for each system.

6.3.4.2 Parametric inference

100 system lifetime observations were simulated from order 4 simply connected coherent

system number 3, with a ground truth of λf ∼ Gamma(shape = 5.5, rate = 3.1) and

λr ∼ Gamma(shape = 135, rate = 11), with exchangeability at the system level as

described above. The hyper prior parameters were taken as follows:

µµf = 1.1 σµf = 0.2

µσf = 0.4 σσf = 0.2

µµr = 2.4 σµr = 0.1

µσr = 0.1 σσr = 0.1

The result of an MCMC run of length 10, 000 is shown in Figure 6.11. It is singularly

interesting that the repair rate has been learned in some fashion in this exchangeable

case, unlike in the i.i.d. setting. The slight right bias of the repair posterior predictive
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Figure 6.12: Topology posterior for ground truth system 3. M consisted of all

11 order 4 simply connected coherent systems. Low or zero probability topologies

suppressed.

can be explained by the presence of the excess tail weight to the right of the failure

rate posterior predictive.

Recall that there are two layers of unobserved data here: the individual Phase-type

node lifetimes, and the component failure and repair process within each of the Phase-

type nodes. That is, there are 800 components undergoing an unobserved process of

failure and repair, leading to 400 dual redundant node failure times which are also

unobserved, resulting in 100 system failure times which are observed (but where the

node causing failure is unknown). In light of this it seems reasonable to be greatly

encouraged at how much learning has been possible. Regrettably it is not all good

news as will now be seen.

6.3.4.3 Topological inference

When the topological inference is added, taking exactly the same specification as above

results in less stellar posterior learning. It would seem at first that there is simply too

little information once system design is removed on top of node lifetime and component

failure and repair schedule. Figure 6.12 shows the posterior of the topology observed

in this instance.

However, in the variety of examples run while testing the method it was intriguing

to note that when the prior variance on the exchangeable failure rate distribution was

increased substantially, the detection of topology tended to become as good as in the

simple Exponential cases, even though the parametric inference was notably weaker in

those situations. Figure 6.13 shows this behaviour. Variance parameters in hierarchical

141



FailurevRate RepairvRate

0.0

0.1

0.2

0.3

0.0 2.5 5.0 7.5 10.014 16 18 20 22 24
λ

D
en

si
ty

Plot

Groundvtruth

Priorvpredictive

Posteriorvpredictive

0.0
0.2
0.4

Topology

2 3 4 5

Pr
ob
ab
ili
ty

Figure 6.13: Example parameter and topology posterior for high variance prior. M

consisted of all 11 order 4 simply connected coherent systems. Zero probability topolo-

gies suppressed.

models are known to sometimes cause interesting behaviour (e.g. Gelman, 2006) and a

detailed study of the behaviour in this model would be interesting future work.

6.3.5 Sensitivity to the prior

It is again important to give some consideration to the sensitivity posterior results may

have to prior specification.

The i.i.d. Exponential case is taken as an example, with 100 failure times simulated

for topology number 3 in Table 5.3, page 112, with ground truth λ = 1.8. Four priors

were chosen for the failure rate (matching the choices in §4.4): two relatively vague and

two which are stronger but incorrect (one overestimating and the other underestimating

the rate). The prior and kernel density estimates of the posteriors are depicted in Figure

6.14. This shows that the results are very robust to prior specification.

The same analysis was run with the same priors, but where the topology was jointly

inferred. The results of the topology posterior for each prior are shown in Figure 6.15.

Here, the posterior is certainly affected by prior specification but is not too dramatically
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Figure 6.14: Marginal failure rate posteriors in solid line for different priors in dashed

line. Prior parameters shown in the dark grey boxes, with failure rate prior densities

depicted by dashed line. Ground truth is dotted vertical line.

changed, the most noticeable discrepancy occurring for the more informative prior

which overestimates the failure rate.

The exchangeable Exponential example can be seen to also be robust to prior

misspecification from Figure 6.7. The discussion from §4.4 applies to the i.i.d. Phase-

type example, since this is the key full conditional sampling component in the MCMC

algorithm. Finally, as mentioned in the section on exchangeable Phase-type lifetime

distributions, there was some unusual behaviour pertaining to the prior and this is an

avenue which requires further active research.

6.3.6 Summary

Examples of parametric inference in isolation, and parametric and topological inference

together have been presented for both the simple Exponential lifetime distribution and

the flexible Phase-type lifetime distribution in i.i.d. and exchangeable system settings.

The parametric inference has been relatively uniformly effective: it is striking to

note that even in those cases where the topology was hard to identify, the marginal

parameter posteriors for those topologies with high posterior probability were in all

cases concordant with the ground truth parameter values.
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Figure 6.15: Marginal topology posteriors for different failure rate priors. Prior

parameters shown in the dark grey boxes. Ground truth is solid vertical line.

Successful highest a posteriori identification of the topology has been more mixed,

showing the difficulty of this as a learning problem. However, in all except the final ex-

ample the candidate set of topologies has seen dramatic reduction to sets which include

the ground truth. Anecdotally, from the variety of examples run during testing this

methodology, three things seemed to have the biggest impact on topological inference:

large candidate sets, varying numbers of components and extremely weak information

such as in the Phase-type case.

In addition, the development of §6.3.4 is important in its own right, extending the

ideas of Chapter 4 from an i.i.d. to an exchangeable setting.
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Chapter 7

Statistical Computing

As alluded to near the start of §3.2, the shift away from entirely closed form solutions

toward algorithms has led to an increase in the importance of statistical computing.

To an increasing extent the following exhortation is being heeded:

“It seems remarkable to me how little effort statisticians put into getting

their favourite statistical methods used [...] One solution is to expect a

reference implementation, some code that is warranted to give the authors’

intended answers in a moderately sized problem.”

— Ripley (2005)

A step further than this is to provide a general purpose reference implementation

which works for arbitrary non-pathological and moderately sized problems. Indeed,

since the above quote, publication of general purpose R (R Core Team, 2012) packages

alongside original theory has become more common and, particularly for complex al-

gorithms, forms an important contribution to the literature by enabling ready usage

of novel methodology.

To this end, two R packages have been produced to provide an easily accessible

interface so as to enable others to use the main contributions of this thesis in their own

problems. This very short chapter serves as a brief demonstration of these packages

since they form major contributions.
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7.1 ‘PhaseType’ package

The PhaseType package (Aslett, 2011) provides highly optimised implementations of

the methodology of Bladt et al. (2003) and the extended methodology of Chapter 4.

The actual implementation consists of some 3, 300 lines of C code, with convenient

interfaces for easy use from within R. A lot of emphasis was placed on a small memory

footprint, minimal memory creation or copying and on interfacing to high performance

LAPACK routines for all linear algebra operations. The memory usage and access

patterns are such that there are effectively zero level 2 cache misses when running

on an Intel Core 2 Duo 2.4GHz CPU with 4MB L2 cache for modest size generator

matrices.

7.1.1 Methodology of Bladt et al. (2003)

The primary function for performing inference using the original methodology of Bladt

et al. (2003) is called phtMCMC. The function prototype is:

phtMCMC(x, states, beta, nu, zeta, n, mhit=1, resume=NULL,

silent=FALSE)

In brief, the main arguments are:

x is the vector of absorption times, y.

states is an integer specifying the dimension of the non-absorbing part of the Phase-

type generator matrix, G, to be fitted.

beta is the n-dimensional vector parameter for the Dirichlet prior, that is β.

nu is the vector representing the Gamma prior shape parameters on each generator

element, filled columnwise, νij.

zeta is the vector representing the Gamma prior shape parameters on each generator

row, ζi.

n is the integer specifying the number of MCMC iterations to perform.
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mhit is the integer specifying the number of inner Metropolis-Hastings MCMC iter-

ations to perform when sampling the latent path (determined, perhaps, using

arguments like those in Theorem 4.1).

More detail is available in the package help files.

Thus, one may easily repeat the first example in Bladt et al. (2003) where an order

4 Phase-type distribution (4-dimensional non-absorbing sub-generator) is fitted to 250

simulations from a Log-Normal distribution. If the 250 simulations are already stored

in the variable y, then one simply executes the following (note that no information

is given in the original paper about the prior parameters used so those are concocted

here):

> library(PhaseType)

> # Prior on starting state

> beta <- c(1, 0, 0, 0)

> # Gamma prior shape (one per matrix element, columnwise)

> nu <- rep(3, 4*4)

> # Gamma prior reciprocal scale (one per matrix row)

> zeta <- rep(0.5, 4)

>

> # Execute 10,000 MCMC iterations

> res <- phtMCMC(y, 4, beta, nu, zeta, 1000, mhit=200)

...

> res$samples[1:2,]

S12 S13 S14 S21 S23 S24 S31

[1,] 4.000000 4.00000 4.000000 4.000000 4.000000 4.000000 4.000000

[2,] 7.573901 6.57875 3.388483 3.678352 5.327703 5.098657 2.275127

S32 S34 S41 S42 S43 s1 s2

[1,] 4.000000 4.000000 4.00000 4.000000 4.000000 4.000000 4.000000

[2,] 3.023175 4.824938 2.93782 2.657661 7.389131 1.789335 2.102437

s3 s4

[1,] 4.000000 4.00000

[2,] 2.409501 2.20482
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Note that where a mode of the Gamma prior exists (when νij > 1), this is taken as

the starting value and otherwise a random draw from the prior is made.

The output S23, for example, refers to the sub-generator matrix entry S23 and s2,

for example, refers to the vector of exit rates entry s2, as per (2.11), page 29.

The next subsection is of more interest here, covering the advances in this thesis.

7.1.2 Methodology of Chapter 4

The extended methodology of Chapter 4 is provided in phtMCMC2. The function pro-

totype is:

phtMCMC2(x, T, beta, nu, zeta, n, censored = rep(FALSE, length(x)),

C=matrix(1.0, nrow=dim(T)[1], ncol=dim(T)[2]), method = "ECS",

mhit = 1, resume = NULL, silent = FALSE)

Full details are in the help files, but interest here is in the following arguments which

are described along with their mathematical representation as per Chapter 4:

x is the vector of absorption times, y.

T is an (n + 1) × (n + 1) character matrix indicating the structure to impose on the

model: that is, specifying the variable position structure for the generator G, as

for example in (2.10), page 29.

beta is the n-dimensional vector parameter for the Dirichlet prior, β.

nu is the pairlist vector representing the Gamma prior shape parameters, νi.

zeta is the pairlist vector representing the Gamma prior reciprocal scale parameters,

ζi.

n is the integer specifying the number of MCMC iterations to perform.

Thus, to conduct the analysis of §4.3.1, page 90, for lifetime data already stored in

the variable y:

> library(PhaseType)

> # Define the structure of the Phase-type generator

> T <- matrix(c(0,"R","R",0,"F",0,0,0,"F",0,0,0,0,"F","F",0), 4)
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> T

[,1] [,2] [,3] [,4]

[1,] "0" "F" "F" "0"

[2,] "R" "0" "0" "F"

[3,] "R" "0" "0" "F"

[4,] "0" "0" "0" "0"

> # Prior on starting state

> beta <- c(1, 0, 0)

> # Gamma prior shape (one per model parameter)

> nu <- c("R"=180, "F"=24)

> # Gamma prior reciprocal scale (one per model parameter)

> zeta <- c("R"=16,"F"=16)

>

> # Execute 10,000 MCMC iterations

> res <- phtMCMC2(y, T, beta, nu, zeta, 10000)

...

> res$samples[1:5,]

F R

[1,] 1.437500 11.187500

[2,] 1.600102 10.502070

[3,] 1.699556 9.967606

[4,] 1.756052 9.751569

[5,] 1.789740 9.614427

Hence, the full machinery of Chapter 4 is available by simply defining the generator

structure via a simple character matrix and the prior parameters. The example above

executes at a speed of over 1, 200 MCMC iterations per second on a 2007 laptop

computer, so that even in highly correlated runs it is not unduly time consuming to

draw sufficient samples to reduce the standard error.

The package is available with full documentation on the official Comprehensive R

Archive Network (CRAN) website:

http://cran.r-project.org/package=PhaseType
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7.2 ‘ReliabilityTheory’ package

The ReliabilityTheory package (Aslett, 2012) provides highly flexible implementations

of the methodology of Chapters 5 and 6, with specific routines for different component

lifetime distributions being developed.

7.2.1 Systems and networks

All simply connected coherent systems of order 2, 3, 4 and 5 are available in the loadable

data sets sccsO2, sccsO3, sccsO4 and sccsO5 respectively, which are lists ordered by

expected lifetimes when assuming i.i.d. Exponentially distributed component lifetimes

(see §5.4). Each list element contains: an igraph (Csárdi and Nepusz, 2006) object

representing the topology (in $graph); the signature vector (in $signature); and the

collection of minimal cut-sets (in $cutsets).

Likewise, all coherent networks of order 2 and 3 are available in the loadable data

sets cnO2 and cnO3.

The implementations of Algorithms 5.1 and 5.2 used to generate these lists are

included within the two private namespace functions coherentSystemsOfOrder and

coherentNetworksOfOrder respectively. They are not publicly visible because it is

not intended that they be routinely run directly (since the results are stored in the

named loadable variables above)1.

Once the ReliabilityTheory package is loaded, simply running data(sccsO4), for ex-

ample, makes graphs, minimal cut-set collections and signatures of all simply connected

coherent systems of order 4 available in the list variable sccsO4.

7.2.2 Making PhaseType easier for reliability problems

The ReliabilityTheory package includes a function which makes the PhaseType package

easier to use in reliability problems, the main obstacle to making use of the advances

of Chapter 4 via phtMCMC2() being specification of the generator matrix. Thus an

important contribution of the ReliabilityTheory package is the automatic generation of

these by using a simple formula to specify the system structure via an igraph object.

1Additionally, a bug was discovered in the coloured graph isomorphism and (s, t) vertex separator
code of igraph v0.6.1, so one must currently manually compile the nightly version of igraph to get the
correct results until the fix is released to CRAN.
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Thus, the generator in (4.12), page 96, can be found by simply running:

> library(ReliabilityTheory)

> graph <- graph.formula(s -- 1 -- 2 -- t, s -- 3 -- 4 -- t,

1:2 -- 5 -- 3:4)

> G <- systemGraphToGenerator(graph, 1, 365)

> G

The double dashes, --, indicate undirected edges and the specification must include

perfectly reliable dummy start and terminal nodes, named s and t. Thus:

• s -- 1 -- 2 -- t specifies system number 1, Table 5.1;

• s -- 3 -- 4 -- t adds another such system in series, resulting in system num-

ber 5, Table 5.3;

• 1:2 -- 5 -- 3:4 finalises the bridge system by inserting the bridging component

5 connected to 1 and 2 on one side and 3 and 4 on the other, resulting in system

number 18, Table A.2 — or the 5 component bridge system numbered in the

required form of Figure 2.3.

After creating the graph and then running systemGraphToGenerator(), G contains a

list with both a numeric generator matrix (in $G with the failure rate, λf = 1, and

repair rate, λr = 365) and a symbolic matrix (in $structure$G), along with a matrix

of the constants cij (in $structure$C, as per §4.2.1, page 76).

If the specific component numbering is not of interest then of course the data

described in the previous subsection saves even more work. The bridge system is

system number 18 in Table A.2, so an isomorphic result is obtained with:

> library(ReliabilityTheory)

> data(sccsO5)

> G <- systemGraphToGenerator(sccsO5[[18]]$graph, 1, 365)

> G

The variables G$structure$G and G$structure$C are in precisely the form re-

quired by phtMCMC2() for the arguments T and C respectively. Thus, after setting prior

parameters the inference of §4.3.3 can be performed by:

151



> res <- phtMCMC2(y, G$structure$G, beta, nu, zeta, 100000,

C=G$structure$C)

7.2.3 Parametric and topological inference

The inferential approach developed in Chapter 6 is quite general, being appropriate for

a wide range of component lifetime distributions. Consequently, in raw form there is an

onus on the user of the technique to provide more of the implementation. To mitigate

this, there are two strands to the inferential part of the ReliabilityTheory package: at the

lowest level, only the general signature based data augmentation scheme is implemented

with the user supplying the necessary additional infrastructure; at a higher level, there

are convenient and simpler interfaces for specific lifetime distributions which hide the

complexity of implementation.

7.2.3.1 Simple interface

Wrappers around the low level code have been provided which implement all of the

prerequisites of Algorithm 6.2 for the settings in the previous chapter: Exponential

and Phase-type component lifetimes with i.i.d. or exchangeable systems assumptions.

For brevity just the simple example of i.i.d. systems with Exponential component

lifetimes is discussed. The function prototype is:

maskedInferenceIIDExponential(t, signature, iter, priorShape,

priorScale)

These arguments may be understood as follows:

t a vector of masked system lifetimes.

signature a single signature vector (for parametric inference only) or a list of signature

vectors (to jointly infer topology).

iter the number of MCMC iterations to perform.

priorShape the shape of the Gamma prior on the Exponential rate.

priorScale the scale of the Gamma prior on the Exponential rate.
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Note that for convenience the signature argument may also be a single object or list of

objects of the same type as the loadable data sets described in the previous subsection.

Thus, conducting the analysis of §6.3.1, starting page 126, for masked lifetime data

already stored in the variable y involves only the following simple command:

> data(sccsO4)

> res <- maskedInferenceIIDExponential(y, sccsO4[[3]]$signature, 10000,

priorShape=9, priorScale=0.5)

when the signature is treated as known to be order 4 simply connected system number

3. If the desire is to infer over all order 4 simply connected coherent systems, this

is as simple as replacing sccsO4[[3]]$signature with sccsO4. Likewise, to infer

over all orders 2–5, simply replace sccsO4[[3]]$signature with c(sccsO2, sccsO3,

sccsO4, sccsO5).

Full details for the exchangeable case and for other distributions are in the package

help files.

7.2.3.2 General framework

If the user wishes to model with component lifetime distributions which are not cur-

rently implemented, it is still possible to save substantial work by calling into the

general low-level framework which was developed in the package. The i.i.d. case is

discussed here, but the exchangeable case mirrors it strongly and is documented in the

package help files.

The core signature based MCMC algorithm is implemented in the following func-

tion:

maskedInferenceIIDCustom(t, signature, cdfComp, pdfComp,

rParmGivenData, rCompGivenParm, startParm, iter, ...)

This is structured so that when implementing a new component lifetime distribu-

tion, one need merely supply the prerequisites of Algorithm 6.2. The detail of the

arguments is as follows:

t, signature, iter are as for the previously described function.
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cdfComp should be a function which computes FY (·). The first argument should be the

value at which to evaluate the CDF, the second argument should be a parameter

vector in the same form as startParm and ... will be passed through in the

event any additional arguments are required.

pdfComp should be a function which computes fY (·). The argument list is as for the

CDF.

rParmGivenData should be a function which will generate a random draw from

fΨ |Y (ψ |y1·, . . . ,ym·)

That is, a random draw from the standard Bayesian posterior in the full compo-

nent data case — prerequisite (iii). The first argument should accept a vector

of the component lifetimes and ... will be passed through in the event any

additional arguments are required.

rCompGivenParm should be a function which will generate a random draw from

FY |Y <ti( · ;ψ) or FY |Y >ti( · ;ψ)

That is, a random draw from the conditional component lifetime distribution —

prerequisite (iv). The first argument should be a parameter vector in the same

form as startParm, the second argument should be a scalar for the time ti, the

third argument should be a censoring indicator: −1 for Y < ti, 0 for exact (i.e.

ti should be returned), and +1 for Y > ti. Finally ... will be passed through in

the event any additional arguments are required.

startParm is a vector of starting values of named parameters. This also sets the

prototype which the routine will use when calling the above user’s functions with

parameter values.

Anyone intending to use this lower level routine is highly recommended to inspect

the source code in the file src/MaskedLifetimeInference_Exponential.R for simple

examples.

The package is available with full documentation on the official Comprehensive R

Archive Network (CRAN) website:

http://cran.r-project.org/package=ReliabilityTheory
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7.3 Summary

This chapter has introduced some of the statistical computing contributions of this

thesis, which ensure that the theoretical elements of the thesis are practicably usable

with minimal additional work on the part of the end user.
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Chapter 8

Conclusion

Inference on the component lifetime distribution parameters of a system in the pres-

ence of only masked system lifetime data can be a challenging problem. The theory

presented here provides new options to reliability practitioners in the case of both re-

pairable and non-repairable components, together with software to enable immediate

use.

In the repairable case, the model reformulation to enable structured generator ma-

trices enables better modelling since there is knowledge about the failure and repair

process. In addition, the computational advances make the MCMC algorithm possible

to use in such problems.

In the non-repairable case, a flexible signature based data augmentation scheme

has been presented which enables a broad class of component lifetime distributions

to be used. In addition, it opens the door to interesting possibilities of topological

inference on system design. All of this flexible framework has been made concrete

with the derivation of the necessary prerequisites for the algorithm in both i.i.d. and

exchangeable system settings for Exponential and Phase-type distributed component

lifetimes.

Prosaic but essential work has been presented to add to the existing catalogue of

coherent systems in the literature with catalogues of simply connected coherent systems

and coherent networks.

Finally, the research presented is complemented by two R packages: PhaseType and

ReliabilityTheory. This software provides reference implementations which can be used

on general non-pathological examples immediately.
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More broadly, the contributions of Chapter 4 have uses far beyond those presented

in this thesis. Phase-type distributions make natural models for first passage times in

a number of scientific modelling settings (e.g. disease progression). Moreover, the ECS

algorithm alone is potentially useful in both theory and applications. For example,

diffusion bridging involves conditional sampling of latent paths and the ideas in ECS

may be of interest for advancing theoretical aspects of inference there. An example

application of ECS would be in synthetic biology where there are phases through which

a cell may passage before death (or absorption may represent apoptosis, extinction,

failure) and latent paths concordant with given absorption times would themselves be

of direct interest.

8.1 Future work

“We live on an island of knowledge surrounded by a sea of ignorance. As

our island of knowledge grows, so does the shore of our ignorance.”

— John A. Wheeler

The modicum of land this work contributes to our island of knowledge indeed forms

its own new shores of ignorance. These questions beckon further research and include:

1. Can computational speed be improved even further in exchange for an approx-

imate answer, by finding functional approximations to the distributions of the

sufficient statistics of the latent processes in Chapter 4? This was alluded to in

§4.2.2.1.

2. A study of the sensitivity of the Chapter 4 methodology to the Exponential com-

ponent lifetime assumption would be of interest. That is, if component lifetimes

are actually non-Exponential then how sensitive are functionals such as mean

time to failure/repair times which may be inferred?

3. How practical is it to extend component failure and repair distributions be-

yond the Exponentially distributed assumption which implicitly underlies the

continuous-time Markov chain model in Chapter 4?

Specifically:
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• one may arbitrarily closely approximate any lifetime distribution by a Phase-

type distribution since they are theoretically dense in the space of all distri-

butions on [0,∞).

• Neuts and Meier (1981) consider units with Phase-type lifetime distribution,

and Phase-type distributed repairs. They show that a particular single re-

pair facility queuing model may be formed by constructing a large generator

matrix through Kronecker products and sums of the Phase-type subgenera-

tors.

Can these two ideas be used to construct instead a Phase-type system represen-

tation when the components are not Exponentially distributed?

4. It would be interesting to see if recent parameter expanded data augmentation

techniques (Hobert, 2011) can be implemented in the methodology of Chapter 4

to reduce autocorrelation in large generator problems such as (4.12).

5. Are there further pre-cut set checks which would increase the computational per-

formance of Algorithms 5.1 and 5.2, to allow cataloguing of larger order systems

and networks?

6. For topological inference in Chapter 6, could one infer the signature vector di-

rectly, as opposed to merely assigning posterior weight to a predefined collection

of signatures? To do so may appear meaningless, but one may either look for the

‘nearest’ corresponding coherent system signature, or else treat it as a mixture

of coherent systems as discussed by Samaniego (2007). Could this also be incor-

porated into a reversible jump MCMC scheme (Green, 1995) to move between

different lengths of signature?

7. In the case of very large collections of candidate topologies, as suggested it is

possible to perform a Metropolis-Hastings move instead of exhaustively comput-

ing all move probabilities. This was done in the course of the research work, but

there are interesting problems related to signature ordering which warrant fur-

ther work: unless the ordering of signatures is sensible the Metropolis-Hastings

proposal of ‘nearby’ signatures can result in the sampler becoming stuck, as is
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readily seen would happen with some of the marginal posterior topology plots of

Chapter 6.

8. It should in principle be possible to accommodate censored data into the method-

ology of Chapter 6. Deriving the necessary results and examining the effectiveness

of the inference would be an interesting avenue of research.

9. At present, the most general case in Chapter 6 is exchangeability at the system

level. Is it possible to consider exchangeable rather than i.i.d. components too?

10. The two R packages have much scope for expansion. Indeed potential collabora-

tors have already been in contact with a view to adding more tools. It would also

be useful to incorporate the catalogue of coherent system signatures from Shaked

and Suarez-Llorens (2003) and Navarro and Rubio (2009). Finally, deriving the

prerequisites of Algorithm 6.2 for more common reliability lifetime distributions

and adding their implementation to the packages would enhance its usefulness.
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Appendix A

Signatures

A.1 Coherent network signatures

Number Network Topology Signature

1 (1, 0, 0, 0)

2
(
2
5
, 1
2
, 1
10
, 0, 0

)

3
(
2
5
, 1
2
, 1
10
, 0, 0

)

4
(
1
5
, 3
5
, 1
5
, 0, 0

)

5
(
1
6
, 3
10
, 13
30
, 1
10
, 0, 0

)

6
(
1
5
, 1
2
, 1
5
, 1
10
, 0
)
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7
(
1
6
, 7
30
, 7
20
, 11
60
, 1
15
, 0
)

8
(
1
6
, 7
30
, 7
20
, 11
60
, 1
15
, 0
)

9
(
1
6
, 1
6
, 11
30
, 7
30
, 1
15
, 0
)

10
(
0, 3

5
, 3
10
, 1
10
, 0
)

11
(
1
7
, 1
7
, 1
5
, 11
35
, 16
105
, 1
21
, 0
)

12
(
0, 4

15
, 13
30
, 7
30
, 1
15
, 0
)

13
(
0, 1

5
, 1
2
, 7
30
, 1
15
, 0
)

14
(
0, 2

21
, 26
105
, 3
7
, 19
105
, 1
21
, 0
)

15
(
0, 2

15
, 7
15
, 4
15
, 2
15
, 0
)

16
(
0, 2

15
, 5
12
, 19
60
, 2
15
, 0
)
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17
(
0, 2

21
, 4
21
, 13
35
, 26
105
, 2
21
, 0
)

18
(
0, 1

21
, 19
105
, 3
7
, 26
105
, 2
21
, 0
)

19
(
0, 1

21
, 19
105
, 2
5
, 29
105
, 2
21
, 0
)

20
(
0, 1

28
, 5
56
, 57
280
, 27
70
, 3
14
, 1
14
, 0
)

21
(
0, 0, 2

5
, 2
5
, 1
5
, 0
)

22
(
0, 0, 4

35
, 2
5
, 12
35
, 1
7
, 0
)

23
(
0, 0, 1

28
, 23
140
, 57
140
, 2
7
, 3
28
, 0
)

24
(
0, 0, 1

42
, 1
14
, 4
21
, 11
28
, 5
21
, 1
12
, 0
)

Table A.1: All coherent networks of node order 3, to-

gether with system signature. Black nodes are start/ter-

minal. Contained in data set cnO3 of ReliabilityTheory

package (see §7.2.1, page 150).
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A.2 Simply connected coherent system signatures

Number System Topology Signature

1 (1, 0, 0, 0, 0)

2
(
3
5
, 2
5
, 0, 0, 0

)
3

(
2
5
, 1
2
, 1
10
, 0, 0

)

4
(
2
5
, 3
10
, 3
10
, 0, 0

)

5
(
1
5
, 3
5
, 1
5
, 0, 0

)
6

(
1
5
, 1
2
, 3
10
, 0, 0

)
7

(
1
5
, 2
5
, 2
5
, 0, 0

)
8

(
1
5
, 1
2
, 1
5
, 1
10
, 0
)

9
(
1
5
, 3
10
, 2
5
, 1
10
, 0
)

10
(
0, 3

5
, 3
10
, 1
10
, 0
)

11
(
0, 1

2
, 2
5
, 1
10
, 0
)

12
(
0, 2

5
, 1
2
, 1
10
, 0
)

13
(
1
5
, 1
5
, 2
5
, 1
5
, 0
)
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14
(
0, 2

5
, 2
5
, 1
5
, 0
)

15
(
0, 3

10
, 1
2
, 1
5
, 0
)

16
(
0, 3

10
, 1
2
, 1
5
, 0
)

17
(
1
5
, 1
5
, 1
5
, 2
5
, 0
)

18
(
0, 1

5
, 3
5
, 1
5
, 0
)

19
(
0, 1

5
, 1
2
, 3
10
, 0
)

20
(
0, 1

5
, 1
2
, 3
10
, 0
)

21
(
0, 1

5
, 2
5
, 2
5
, 0
)

22
(
0, 1

10
, 1
2
, 2
5
, 0
)

23
(
0, 1

10
, 2
5
, 1
2
, 0
)

24
(
0, 1

10
, 3
10
, 3
5
, 0
)

25
(
0, 2

5
, 1
5
, 1
5
, 1
5

)
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26
(
0, 1

5
, 2
5
, 1
5
, 1
5

)

27
(
0, 1

10
, 2
5
, 3
10
, 1
5

)

28
(
0, 0, 2

5
, 2
5
, 1
5

)

29
(
0, 1

10
, 1
5
, 1
2
, 1
5

)

30
(
0, 0, 3

10
, 1
2
, 1
5

)

31
(
0, 0, 1

5
, 3
5
, 1
5

)

32
(
0, 0, 3

10
, 3
10
, 2
5

)

33
(
0, 0, 1

10
, 1
2
, 2
5

)

34
(
0, 0, 0, 2

5
, 3
5

)
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35 (0, 0, 0, 0, 1)

Table A.2: All simply connected systems of order 5,

together with system signature. Contained in data set

sccsO5 of ReliabilityTheory package (see §7.2.1, page 150).
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