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Abstract

Machine learning is increasingly being used to generate prediction models for use in
a number of real-world settings, from credit risk assessment to clinical decision support.
Recent discussions have highlighted potential problems in the updating of a predictive
score for a binary outcome when an existing predictive score forms part of the standard
workflow, driving interventions. In this setting, the existing score induces an additional
causative pathway which leads to miscalibration when the original score is replaced.
We propose a general causal framework to describe and address this problem, and
demonstrate an equivalent formulation as a partially observed Markov decision process.
We use this model to demonstrate the impact of such ‘naive updating’ when performed
repeatedly. Namely, we show that successive predictive scores may converge to a point
where they predict their own effect, or may eventually tend toward a stable oscillation
between two values, and we argue that neither outcome is desirable. Furthermore, we
demonstrate that even if model-fitting procedures improve, actual performance may
worsen. We complement these findings with a discussion of several potential routes to
overcome these issues.

Note: Sections of this preprint on ‘Successive adjuvancy’ (section 4, theorem 2,
figures 4, 5, and associated discussions) were not included in the originally submitted
version of this paper due to length. This material does not appear in the published
version of this manuscript, and the reader should be aware that these sections did not
undergo peer review.
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1 Introduction

A common machine learning task concerns the prediction of an outcome Y given a known
set of predictors X [Friedman et al., 2001]. Usually, the intent is to anticipate the value of
Y in situations in which only X is known. Often, the ultimate goal is to avoid or encourage
certain values of Y , with interventions guided by the predictions provided by the algorithm.

We focus on the standard setting, often seen in healthcare, where X is first observed and
used to make predictions about Y , then interventions occur before outcomes are observed.
This setting can lead to prediction scores being ‘victims of their own success’ [Lenert et al.,
2019, Sperrin et al., 2019]. Interventions driven by the score can change the distribution
of the data and outcomes, leading to a decay in observed performance, particularly if
the intervention is successful. Analysis of this effect requires consideration of the causal
processes governing X, Y , and the potential interventions driven by the score [Sperrin
et al., 2019]. Predictive scores are often implemented by direct dissemination to agents
that are capable of modifying these causal processes [Rahimian et al., 2018, Hyland et al.,
2020], which leads to vulnerability to this problem. This problem also exist if predictions
influence discrete actions, initial progress for this has been made using bandits [Shi et al.,
2020]. The phenomenon in which a predictive model influences its own effect has been called
‘performative prediction’ [Perdomo et al., 2020], and is of interest in model fairness [Liu
et al., 2018, Elzayn et al., 2019], in that actions taken in response to a model may pervert
fairness metrics under which the model was designed.

This problem is particularly critical in settings where existing predictive scores are
to be replaced by an updated version. In many real-world contexts, the underlying phe-
nomena represented by the predictive model will change over time [Wallace et al., 2014];
statistical procedures for prediction may also improve (particularly for complex tasks);
and researchers may wish to include further predictors or increase the scope of predictive
scores. In general, we may expect that most predictive algorithms will need to be updated
or replaced over time. Up-to-date models should generally be trained on the most recent
available data which, as described above, will be contaminated by interventions based on
existing scores. Should a new predictive model be fitted to new observations of X and Y ,
it will consequently also model the impact of the existing score. Removal of the existing
score will introduce bias into predictions made by the new score, as will insertion of the
new score in place of the old. We term such an operation a ‘naive model replacement’.

Our main aim is to introduce a general causal framework under which this phenomenon
can be quantitatively studied. We use this framework to draw attention to the hazards of
naive model replacement, especially when it occurs repeatedly. We introduce these hazards
in the context of a generalised ultimate aim of the model, formulated as a constrained
optimisation problem in which the occurrence of undesirable values of Y is to be minimised
with limited intervention. We also use our model to describe a second replacement strategy,
‘successive adjuvancy’, in which new predictive scores are ‘added’ to previous scores, with
different emergent properties.
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A simple parable of this phenomenon concerns yearly influenza vaccinations. In a
vaccination-naive population, risk assessments for influenza motivate widespread vaccina-
tion. However, in a later ‘epoch’, the risk may appear much lower, and could naively
suggest vaccination is no longer required introducing risks to public health1. More gen-
erally, updated risk scores for clinical outcomes may be biased due to the interventions
motivated by the scores themselves. As a second example, consider risk scores used to
predict future emergency hospital admissions Y , on the basis of covariates X [Rahimian
et al., 2018]. Suppose that prescription of some drug D ∈ X confers increased risk, and
this is established by the risk score. Should such risk scores be distributed at time t = 0 to
agents able to modify these factors (e.g., doctors), they may intervene by taking patients
off D thereby reducing emergency admission risk E[Y ] at a time t = 1. If a new score is
naively fitted to X at t = 0 and Y at t = 1, it would underestimate the danger of D.

Section 2 describes the problem in terms of causal effects. We develop this into a full
model specification in Section 2.2, along with a description of the constrained optimisation
problem the model/intervention pair aims to solve in 2.3. In Section 3, we analyse the
short and long-term effects of repeated naive replacement and show that they are generally
undesirable , and in section 4 we describe successive adjuvancy and examine long-term
effects in a simplified setting. In Section 5, we discuss three classes of solutions: more
complex modelling, routine maintenance of a ‘hold-out’ set, and controlled interventions.
In Section 6 we describe a reformulation of the model as control theory problem. Finally,
in Section 7, we discuss limitations and implications of our approach. Our supplementary
material contains relevant examples and proofs, an exposition of the problem in a real-world
example, and a list of open problems in this setting.

2 Model

2.1 Overview

Assume that we are attempting to predict an outcome Y given a known set of covariates
X. For simplicity, we assume Y is a binary (e.g. admission versus non admission to an
Intensive Care Unit) and model it as a Bernoulli random variable. If Y = 1 is considered
to be a negative outcome, often the eventual aim is to reduce P(Y = 1|X) = E[Y |X]; we
will discuss this in Section 2.2 once we have defined terms formally. For the moment, we
assume the causal structure shown in Figure 1. We denote by ρ0(X) an initial predictive
model for E[Y |X], fitted to observations of (X,Y ) generated under the causal structure in
Figure 1A. During deployment, we compute ρ0(X) for all members of a population and
disseminate it to agents who can intervene on X (e.g. doctors) based on those predictions,
aiming to prevent Y = 1. Replacing or updating ρ0, will typically involve fitting a new

1See for example https://www.who.int/news-room/spotlight/ten-threats-to-global-health-in-

2019
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predictive model ρ1(X) to new observations of (X,Y ). It is clear that while ρ0(X) is an
estimator of E[Y |X], the new predictive function ρ1(X) is instead an estimator of

E [Y |X,do [ρ0(X)]] (1)

where do [ρ0(X)] indicates the action ‘compute and disseminate ρ0(X)’. Although ρ0(X)
is determined by X, the computation do [ρ0(X)] makes ρ0 actionable. This opens a second
causal pathway from X to Y , affecting the setting in which ρ1 is fitted (Figure 1B). If the
initial score ρ0(X) is universally disseminated, the distribution of Y given X (without the
do [ρ0(X)]) now becomes a counterfactual which we cannot observe.

X Y

ρ1	(fit)

ρ0(X)

A B

X Y

ρ0	(fit)

Figure 1: Causal structure under which ρ0 (panel A) and ρ1 (panel B) are fitted. Dashed
lines indicate a model-fitting process.

2.2 General notation and assumptions

Here, we use a causal model to illustrate potential emergent behaviour resulting from
repeated naive model updating, expanding out the ‘do’-operator used in section 2.1. We
do not aim to cover the complexities of all real-world applications, yet our simplified setup
is sufficient to demonstrate the dangers arising in this context.

As ρ0 is deployed and drives interventions, covariate values X may change, as may the
dependence of Y on X. Here, we partition X into three sets:

Xs: Fixed or ‘set’ covariates; dim(Xs) = ps,

Xa: Actionable covariates; dim(Xa) = pa,

X`: Latent covariates; dim(X`) = p`. (2)

Although X` may influence the causal mechanism between X and Y and may be intervened
on, we assume it is unobserved. Hence, only Xs and Xa are known when evaluating a
risk score, and Xs cannot be intervened on (e.g. ‘Age’). We also define two sets of time
indicators t, e (time, epoch):

t ∈ {0, 1} :





t = 0: predictive score is computed

t = 1: Y observed, after possible

intervention
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e ∈ N :

{
e = 0: no predictive score is used

e > 0: model from epoch e− 1 is used.

We assume that values ofX depend on t and e using the notationXe(t) = (Xs
e (t), Xa

e (t), X`
e(t)) ∈

Ωs ×Ωa ×Ω` = Ω. As Y is only observed at t = 1, Y at epoch e is denoted as Ye. At each
epoch, we assume that values of Xe(t) across individuals in the population are iid with
probability measure µe. We introduce the following functions

fe(x
s, xa, x`) = E

[
Ye|Xe(1) = (xs, xa, x`)

]

= Causal mechanism determining

probability of Ye = 1 given Xe(1)

gae (ρ, xa) ∈ {g : [0, 1]× Ωa → Ωa}
= Intervention process on Xa in

response to a predictive score ρ

updating Xa
e (0)→ Xa

e (1)

g`e(ρ, x
`) ∈ {g : [0, 1]× Ω` → Ω`}

= Intervention process on X` in

response to a predictive score ρ

updating X`
e(0)→ X`

e(1)

ρe(x
s, xa) ∈ {ρ : Ωs × Ωa → [0, 1]}

= Predictive score trained at epoch

e, evaluated at observed covariates.

Our main model is based on the following assumptions

1. ∀e Xs
e (0) = Xs

e (1): ‘set’ covariates do not change from t = 0 to t = 1

2. Xa
0 (0) = Xa

0 (1), X`
0(0) = X`

0(1): ‘actionable’ and ‘latent’ covariates do not change at
epoch 0

3. X`
e(t) is unobserved, but may be modified from t = 0 to t = 1 in response to ρe−1

4. Values of Xe(0) are independent across epochs, i.e. we do not track the same subjects
over time.

5. At epoch e, the predictive score uses only Xa
e (0), Xs

e (0) and Ye as training data;
previous epochs are ignored and Xa

e (1), Xs
e (1) are not observed.

6. ∀e E[Ye|Xe] = E[Ye|Xe(1)]: Ye depends only on Xe(1); that is, after any potential
interventions.
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Besides these core assumptions, for the applications in this work, we variably assume some
of the following

7. fe, g
a
e , g`e and µe remain fixed across epochs2, so values {Xs

· } are iid, as are {Xa
· }

and {X`
· } (within an epoch they may be correlated). Where we make this as-

sumption, we will omit the epoch subscript for clarity. We also use the shorthand
X` ≡ X`

e(0)|(Xs
e (0), Xa

e (0)) = (xs, xa)

8. We allow ρe to be an arbitrary function, but generally presume it is an estimator of

ρe(x
s, xa) ≈ E [Ye|Xs

e (0) = xs, Xa
e (0) = xa]

= EX`

[
fe

(
xs, gae (ρe−1, xa), g`e(ρe−1, X

`)
)]

, f̃e(x
s, xa) (3)

noting that f̃e depends on e even if fe does not.

9. The function fe is C1 in all arguments, and covariates are coded such that increases
in covariate values increase risk

10. g`e, g
a
e are C1 in all arguments, and a higher value of ρ means a larger intervention

is made (we assume g`e and gae to be deterministic, but random valued functions may
more accurately capture the uncertainty linked to real-world interventions).

This extended causal model is shown in Figure 2. To aid interpretation, a real-world
example is described using this notation in Supplementary Section 8.

2.3 Aim of predictive score

The aim of the predictive score is generally to estimate E[Ye|Xe(0)] accurately, presuming
that we take Xe(0) to be identically distributed over the population concerned. However,
if action is to be taken on the score, we may presume the ultimate goal is to minimise
E[Ye], i.e. minimising

E [Ye] = EXe(0) [Ye|Xe(1)]

= EXe(0)

[
fe(X

s, gae (ρ,Xa
e (0)), g`e(ρ,X

`
e(0)))

]
(4)

However, we presume that we cannot afford to maximally intervene in all cases. Suppose
the cost of lowering Xa and X` by x is ca(Xa, x) and c`(X`, x), respectively. The total
intervention must then satisfy

2In practice, we may assume fe changes slightly between epochs, but that this change is negligible.
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EXe(0)

[
ca
(
Xa

e (0), Xa
e (0)− gae (ρ,Xa

e (0))
)

+

c`
(
X`

e(0), X`
e(0)− g`e(ρ,X`

e(0))
)]
≤ C (5)

for a known constant C, representing maximum cost. Thus we want to minimise (4)
subject to (5). We have allowed fe, µe, g

a
e , g`e and ρe to vary across epochs. Of these, we

can consider fe and µe to vary as a consequence of underlying processes, and gae , g`e and ρe
to be (somewhat) under our control. Depending on the problem, we may either consider
gae and g`e as fixed, and choose an optimal function ρe; or consider ρe as fixed, and choose
optimal functions gae , g`e. If both are optimised, this corresponds to a general problem of
resource allocation; see Supplementary Section 10.1.

3 Naive model updating

We consider a ‘naive’ process in which a new score ρe is fitted in each epoch, and then
used as a drop-in replacement of an existing score ρe−1. We show that this procedure does
not generally solve the constrained optimisation problem in Section 2.3, can lead to ‘worse’
performance of ‘better’ models, and may lead to wide oscillation of predictions for fixed
inputs across epochs.

3.1 Worse performance of better models

Here, we show that naive updating can lead to a loss in observed performance — even
when the procedure to infer ρe is more accurate. We adopt assumptions 1–10, taking
the approximation in equation (3) to be imperfect. Although most model elements are
conserved across epochs (assumption 7), we presume that the procedure used to infer ρe
changes, leading to better estimators of the function f̃e.

At epoch e, the training data is denoted by (X?
e , Y

?
e ) and consists of n samples of

(Xe(0), Ye), with the latent covariate information removed. In the absence of interventions,
we assert that model performance will improve over epochs. Since performance under non-
intervention is equivalent to performance at epoch 0, this can be stated as:

E(X?
0 ,Y

?
0 )

[
mf̃0

(ρe|X?
0 , Y

?
0 )
]
>

E(X?
0 ,Y

?
0 )

[
mf̃0

(ρe+1|X?
0 , Y

?
0 )
]
, (6)

where mf̃ (ρ|X,Y ) denotes a metric for closeness of ρ to f̃ , given observed data (X,Y )3.
However, if interventions are in place, the improvement in equation (6), does not imply
that the actual performance improves across epochs, that is:

3In practice, mf̃e
is unknown but (assuming latent covariates have a small influence on f) estimates of

mf̃0
can be calculated through a holdout test data set.
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Figure 2: This figure shows a causal diagram. An ‘epoch’ is a new model fitting cycle.
Covariates for a sample at the start of an epoch are modelled by X ·e(0). We presume
{Xs

e (0), e ≥ 0} are independent (as are Xa
· (0) and X`

· (0)). We start with a sample at
t = 0, e = 0. The values Xs

0(0), Xa
0 (0) are observed and sent to analysts (arrow 1). No

predictive score is present and no interventions are made based on it, so values remain the
same to t = 1 (arrows 2). E[Y0] depends only on covariates at t = 1, through f0 (arrows 3).
Y0 is observed and sent to analysts (arrow 4) who decide a function ρ0, which is retained
into epoch 1 (arrow 5). We start epoch 1 with a new independent sample. At t = 0, we
observe Xs

1(0), Xa
1 (0) and send them to analysts (arrow 6) who compute ρ0 (Xs

1(0), Xa
1 (0))

which is used to inform interventions ga1 , g`1 (arrow 7) to change values Xa
e (0), X`

e(0) to
Xa

e (1), X`
e(1) respectively (arrows 8). Xs

e (0) is not interventionable and becomes Xs
e (1)

(arrow 9). E[Y1] is determined by covariates at t = 1 (arrows 10). Analysts use the values
of Xs

1(0), Xa
1 (0) (arrows 11), and Y1 (arrow 12) to decide a ρ1, which is retained (arrow

13) for epoch 2. Subsequent epochs proceed similarly to epoch 1.
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E(X?
e ,Y

?
e )

[
mf̃e

(ρe|X?
e , Y

?
e )
]
6>

E(X?
e+1,Y

?
e+1)

[
mf̃e+1

(ρe+1|X?
e+1, Y

?
e+1)

]
. (7)

This is proved by counterexample: see Supplementary Section 10.2. A critical consequence
of this artefact is that stakeholders may decide not to update an existing score, even if an
apparently better one is available.4

3.2 Dynamics of repeated naive updating

Here, we analyse the dynamics of repeated naive model updating. For this purpose, we
make assumptions 1-10 and assume that ρe is an oracle: the ‘≈’ in equation (3) is replaced
by an ‘=’.

At epoch 0, there are no interventions, hence the risk of observing Y = 1 is E[Y0|X0(0) =
(xs, xa, x`)] = f(xs, xa, x`). The score ρ0 is therefore defined as

ρ0(x
s, xa) = EX` [f(xs, xa, X`)], (8)

where X` is denoted as in assumption 7. In subsequent epochs, ρe is used to modify xa

and x` via ga and g`, leading to the following recursive relation:

ρ0(x
s, xa) = EX` [f(xs, xa, X`)]

ρe(x
s, xa) = EX` [f(xs, ga(ρe−1(xs, xa), xa),

g`(ρe−1(xs, xa), X`))]

, h(ρe−1(xs, xa)) (9)

We briefly explore the dynamics of this recursion. Let z ∈ [0, 1] be arbitrary and denote
by S the substitution (xs, xa, xl) =

(
xs, ga(z, xa), g`(z,X`)

)
. Recalling definitions of ps, pa

from (2), we set (for i across the dimensions of (xa, x`))

δg
a

i =
∂[ga(z, xa)]i

∂z
δg

`

i =
∂[g`(z, x`)]i

∂z

δf
a

i = (∇f |S)ps+i δf
`

i = (∇f |S)ps+pa+i

recalling assumptions 9,10 to assert that these partial derivatives exist. Assumptions 9

and 10 further imply δf
`

i > 0, δf
a

i > 0 and δg
a

i < 0, δg
`

i < 0 respectively, so

h′(z) = EX`




pa∑

i

δg
a

i δ
fa

i +

p`∑

i

δg
`

i δ
f`

i


 < 0 (10)

4We note that practically (if a holdout test data set was used) the conclusions on performance made by
stakeholders would be based on a risk score’s closeness to f̃0 instead of f̃e, but the results are the same,
which we show in Supplementary Section 10.2.
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and thus the recursion ρe+1 = h(ρe) has exactly one fixed point. Call this z0, so z0 = h(z0).
We now note

Theorem 1. If h′(z0) ≤ −1 then the recursion does not converge unless ρ0 = z0, and
will tend toward a stable oscillation between two values. If for some (possibly unbounded)
interval R we have ρe ∈ R for some e and for all z ∈ R, h(z) ∈ R and

pa∑

i

(
δg

a

i

)2
≤ k1,

p`∑

i

EX`

[(
δg

`

i

)2]
≤ k2 (11)

pa∑

i

EX`

[
|δfa

i |
]2
≤ k3,

p`∑

i

EX`

[(
δf

`

i

)2]
≤ k4 (12)

where
√
k1k3 +

√
k2k4 < 1, then

|ρe(xs, xa)− ρe+1(x
s, xa)|→ 0

as n→∞.

This is proved in Supplementary Appendix 10.3. Alternative conditions for convergence
(‘performative stability’) are proved in Perdomo et al. [2020].

Condition (11) states that, on average, interventions make only small change to xa and
x` in response to small changes in ρ. Condition (12) states that, on average, the actual
risk changes little with small changes in covariates. These conditions are sufficient but not
necessary. Since h′(z) < 0, successive estimates of ρe will oscillate around their limit. In
general, a requirement for general convergence of ρe restricts the type of interventions which
can be in place. A simple scenario in which ρe cannot converge is provided in Supplementary
Section 10.6, and we illustrate an example showing convergence and divergence of ρe in
Figure 3. We produced a simple web app illustrating this problem at https://ajl-apps.
shinyapps.io/universal_replacement/

We may hope that naive updating, when it converges, may solve the optimisation
problem in Section 2.3. It does not, and we give a specific counterexample in Supplementary
Section 10.5. Finally, we note that the dynamics above also model a related setting,
where samples are tracked across epochs and interventions are permanent (Supplementary
Section 9). In summary, naive updating can readily lead to wide oscillation of successive
risk estimates, and even if ρe does converge, the limit does not generally correspond to an
optimal outcome in terms of minimising incidence of Y .

4 Successive adjuvancy

Note: This section and associated content (theorem 2, figures 4, 5, and associated discus-
sions) were not included in the originally submitted version of this paper due to length.

10



Figure 3: Example showing convergence and divergence of ρe across epochs. We disregard
x`, g` in this example. We choose f(xs, xa) = logit(xs, xa) (top left). We choose ga with
the rationale that we intervene by lowering Xa(0) when ρe > 1/2, but allow Xa(0) to
increase when ρe < 1/2 (that is, resources for intervention are redistributed rather than
introduced), and assume that we can intervene more effectively when Xa(0) is high (

strictly, ga(ρ, xa) = 1
2

(
(3− 2ρ)xa + (1− 2ρ)

√
1 + (xa)2

)
, top right panel). Bottom panel

shows whether ρe(x
s, xa) converges or diverges, and how long it takes (num. epochs until

∆e , |ρe − ρe−1|< 0.01 or (|∆e|> 0.05∪ |∆e −∆e−1|< 0.01); |e|≤ 10). Insets show cobweb
plots for relevant recursions, and plots of ρe.
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This material does not appear in the published version of this manuscript, and the reader
should be aware that these sections did not undergo peer review.

We propose a second strategy for updating risk scores in which interventions are ‘built’
across successive epochs, effectively using new risk scores as adjuvants to risk scores from
previous epochs, rather than replacements.

We retain assumptions 1 through 10 except assumption 7: we assume that fe and µe
remain fixed across epochs, but gae and g`e do not. Although we no longer consider gae and
g`e fixed across epochs, we consider fixed functions ga and g` which will be used as ‘building
blocks’ for gae and g`e. In epoch e, we observe initial values xe(0) =

(
xae(0), xse(0), x`e(0)

)
=

(xae , x
s
e, x

`
e) at t = 0, and compute ρ0(x

a
e , x

s
e), ρ1(x

a
e , x

s
e), . . . , ρe−1(x

a
e , x

s
e).

We build gae , g`e as follows. We begin by intervening on xse(0), x`e(0) according to ρ0 and
the building block functions ga, g` to get ga(ρ0, x

a
e), gl(ρ0, x

`
e). We then intervene on these

new values according to ρ1, to get ga (ρ1, g
a(ρ0, x

a
e)), g`

(
ρ1, g

`(ρ0, x
`
e)
)
. We then intervene

on these values according to ρ2, and so on. The intervention functions at epoch e are thus
defined as

gae (ρ, xa) = ga (ρe−1, ga (ρe−2, . . . , ga(ρ0, x
a) . . . ))

g`e(ρ, x
`) = g`

(
ρe−1, g`

(
ρe−2, . . . , g`(ρ0, xa) . . .

))

(13)

taking xs at some fixed value, and ρ0, ρ1, . . . , ρe−1 as fixed functions. We also presume
again that ρe is an oracle; that is, that the approximation in equation 3 is perfect. This
enables construction of a recursive definition:

ga0(·, xa) = xa

g`0(·, x`) = x`

ρ0 = ρ0(x
s, xa) = EX` [f

(
xs, xa, X`

)
]

ga1(ρ0, x
a) = ga(ρ0, x

a)

g`1(ρ0, x
`) = g`(ρ0, x

`)

ρ1 = ρ0(x
s, xa) = EX` [f

(
xs, ga1(ρ0, x

a), g`1(ρ0, X
`)
)

]

gae+1(ρe, x
a) = ga(ρe, g

a
e (ρe−1, xa))

g`e+1(ρe, x
`) = g`(ρe, g

`
e

(
ρe−1, x`)

)

ρe+1 = ρe+1(x
s, xa) = EX` [f

(
xs, gae+1(ρe, x

a), g`e+1(ρe, X
`)
)

] (14)
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4.1 Dynamics of successive adjuvancy

The dynamics of this system are more complex than that of naive updating. However,
under much simplified circumstances: a univariate xa, and disregarding xl, we show the
following:

Theorem 2. Assume the following:

1. g`(·, x`) = g`e(·, x`) = x`, and X`
e ∼ δ0 (so all terms involving ` can be omitted from

recursion 14)

2. xa is univariate (pa = 1)

3. ∂
∂xa f(xs, xa) > 0

4. For some unique ρeq we have ∀x ga(ρeq, x) = x, and ∀(x, ρ 6= ρeq) g
a(ρ, x) 6= x

For brevity we define f(x) = f(xs, x) and denote by S2 the substitution (ρ, xa)→ (r, f−1(r).
Now if, for some interval I containing ρeq, we have ρe ∈ I for some e < ∞, and for all
r ∈ I, we have

∣∣∣∣
∂

∂r
f(ga(r, f−1(r)))

∣∣∣∣ =

∣∣∣∣∣f
′ (ga(r, f−1(r)

)
(

∂ga

∂xa |S2

f ′(f−1(r))
+
∂ga

∂r
|S2

)∣∣∣∣∣ < 1 (15)

then

ρe(x
s, xa)→ ρeq

P (Ye|(Xs
e (0), Xa

e (0)) = (xs, xa))→ ρeq

gae (ρe−1, xa)→ {x : f(xs, x) = ρeq} = f−1(ρeq) (16)

as e→∞.

This is proved in Supplementary Section 10.4. Although limited to simplified circum-
stances, this results of this theorem warrant some interpretation. We may consider ρeq
to be an ‘equivocal risk’: that is, a risk at which the value of xa remains the same. The
theorem roughly states that, for sufficiently slowly-changing f and ga, interventions will
build towards a point in which interventions bring everyone to almost the same (equivocal)
risk level.

For certain reasonable values of f and ga, including those used for figure 3, the derivative
of h2 can change sign, leading to chaotic behaviour of ρe (figure 4).

An advantage of successive adjuvancy over naive replacement is that risk scores from
previous epochs ρ0, ρ1, . . . , ρe−1 have an immediate interpretation as unbiased estimates of
risk estimates through the process of intervention. If we consider the interventions gae , g`e as
a series of interventions of type ga, g` applied in succession, then ρ0 is the true risk (P (Y ))

13



Figure 4: Dynamics of successive adjuvancy. In both panels, f(xs, xa) = logit(xs + xa),
we have ρeq = 1/2 and the colour indicates the difference ρe − ρeq for e = 20. The left
panel shows dynamics in which ga has the same form as for figure 3, and can be seen
to lead to chaotic behaviour of ρe for some values of (xs, xa). The right-hand panel uses
ga(ρ, xa) = xa− 4(1− ρ)logit(xa), and ρe can be seen to converge to ρeq everywhere, albeit
at different rates.

before applying ga, g` at all, ρ1 is the true risk after applying ga, g` once in response to
ρ0, ρ2 is the true risk after applying ga, g` firstly in response to ρ0 and subsequently in
response to ρ1, and so on. Specifically, ρe−1 is the risk of Y immediately before applying
ga, g` for the final (eth) time. When used for this final time, ga and g` are applied in
response to ρe−1 itself. Figure 5 illustrates this idea for epochs 0 and 1 using the format of
figure 1. Seen in this way, repeatedly adjusting covariates on the basis of new risk estimates
resembles a ‘boosting’ strategy, in which each new ρe captures the residual risk from ρ0
through ρe−1, which seems a logical approach in a real-world situation.

An implementation of successive adjuvancy is included in our web app at https://

ajl-apps.shinyapps.io/universal_replacement/.

5 Strategies to avoid this problem

Naive updating is an appropriate method for updating risk scores if no interventions are
being made (that is, ga(ρ, xa) = xa and g`(ρ, x`) = x`), as may be the case if a risk score
is used for prognosis only, rather than to guide actions5. It may also be appropriate if we

5EUROscore2 [Nashef et al., 2012] (a risk predictor for cardiac surgery) can be used in this way, by
giving patients prognostic estimates but without being used to recommend for or against surgery
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Figure 5: Underlying causality structure of successive adjuvancy. Panel A shows structure
in a score-naive setting where ρ0 is fitted. Panel B shows the causal structure when ρ1 is
fitted; as for figure 1, ρ1 models a setting (coloured red) in which ρ0 forms an additional
causal pathway from X to Y . Undernaive updating (panel C), ρ1 replaces ρ0, and is used to
model a scenario distinct from that to which it was fitted. However, in successive adjuvancy
(panel D), ρ1 is an adjuvant to ρ0, and thus still operates on the same system to which it
was fitted. In panel D, ρ1 is used to guide interventions after having intervened on ρ0.

do not aim to solve the constrained optimisation problem in Section 2.3, and are only con-
cerned with accuracy of the model: in that case, under at least the conditions of Theorem 1,
naive updating will lead to estimates ρe(x

s, xa) converging as e→∞ to a setting in which
ρe accurately estimates its own effect: conceptually, ρe(x

s, xa) estimates the probability
of Y after interventions have been made on the basis of ρe(x

s, xa) itself [Perdomo et al.,
2020]. Naive updating is otherwise generally not advisable, although a range of alternative
modelling strategies do not lead to the same problems.

We demonstrate three general strategies for avoiding the naive updating problem be-
low. We describe how each of these accomplishes this and compare their advantages in
Supplementary section 11. We describe how an implementation of each strategy may look
in the context of a toy example in supplementary section 11.1.

Successive adjvuancy may be an appropriate method for updating risk scores if eventual
convergence can be proven and a progression of all samples towards the same risk level is
be a desirable outcome. Such an outcome clearly does not generally solve the constrained
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optimisation problem in 2.3 as the cost may be arbitrarily large. Although gae and g`e are
variable, they are entirely built of successive applications of ga and g`, which may not be
practical.

5.1 More complex modelling and more data

An obvious way to avoid the problem is to model the setting completely, including the
effect of any interventions. Methods of this type would include explicit causal modelling,
as used in related problems [Sperrin et al., 2018], or counterfactual inference, which has
been suggested as a direct approach to the problem [Sperrin et al., 2019]. These approaches
would require knowledge or accurate inference of g` and ga, or observation of covariates at
several points in each epoch [Sperrin et al., 2018].

A second approach is to consider data from previous epochs alongside the current data
when fitting ρe. Such data can be used as a prior on the fitted model [Alaa and van der
Schaar, 2018] and could be used to infer model elements: µe, g

`, ga, and f . If accurate data
were available, oscillatory effects could even be detected and avoided. A difficulty with this
approach in a realistic setting is in distinguishing whether inaccuracies in older models are
due to drift in the underlying system [Quionero-Candela et al., 2009] (in our case, f and
µe) or due to the effects of intervention. Indeed, the problems with naive updating can be
seen as treating model inaccuracies as though they are due to the first effect, when they
are in fact due to the second. Definitive assertion of the cause of inaccuracies will, again,
generally require more frequent observation of covariates.

5.2 Hold out set

A straightforward and potentially practical means to avoid the problems associated with
naive updating is to retain a set of samples in each epoch for which ρe is not calculated, and
hence cannot guide intervention. For such samples, Xe(0) = Xe(1), so a regression of Y on
Xe(0) restricted to these ‘held out’ samples can be used as an unbiased estimate for fe. If
the hold out set is randomly selected, this would emulate a clinical trial which enables us
to assess the effect of predictive scores (and their associated interventions) across epochs.

A problem with this approach is that any benefit of the risk score-guided intervention
is lost for individuals in the hold-out set. Careful consideration of the ethical consequences
of this strategy is therefore required.

5.3 Control interventions

A radically different option is the direct specification of the interventions g`e and gae in each
epoch, considering ρe, µe constant, and fe to change only slightly with e. This enables
directly addressing the constrained optimisation problem in Section 2.3.
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If X` can be disregarded, and we may regard fe−1 as an unbiased estimate of fe
6, then

we may take a simple inductive approach:

1. At the end of epoch 0, infer f0 and µ0. Given some fixed functions ρ, ca, find a function
ga1 which solves the constrained optimisation problem in section 2.3 assuming f1 = f0,
ρ1 = ρ0. Implement this intervention.

2. At the end of epoch e > 0, regress Ye on

Xe(1) =
(
Xs

e (0), gae

(
ρ(Xs

e (0), Xa
e (0)), Xa

e (0)
))

to attain an unbiased estimate of fe. Now solve the constrained optimisation problem
to optimise gae+1, assuming fe+1 = fe and ρe+1 = ρe

Thus in each epoch an unbiased update of fe can be made, and the constrained optimisation
problem can be directly solved. If X` is present, the problem is more complex. We suggest
this general case as an open problem (see Supplementary Section 12).

A problem with this approach in a medical setting is that specification of gae may cause
the procedure to be subject to medical device regulation [MHRA, 2019]. Implications of
these regulatory processes map to our potential solutions; for example, countries in the
EU [EU Council, 2014] have only developed regulatory processes to the point of accom-
modating static risk scores, and by extension currently treat updated scores as new tools.
In these cases a separate evaluation exercise, such as testing on a hold-out, is necessary
to demonstrate efficacy prior to dissemination, which would also remedy the problems of
naive updating (although costs of repeated formal evaluations of effectiveness, and the
ethics of a hold-out, may be a concern). However, the US FDA have proposed an alter-
native ‘total-life-cycle’ approach [USFDA et al., 2019] which allows for model updating
(contingent on defining a performance monitoring mechanism), which, given the problems
of naive updating, is potentially seriously flawed.

6 Formulation as control-theoretic/ reinforcement learning
problem

Control theory [Bertsekas, 1995] and its modern incarnation, reinforcement learning [Sutton
and Barto, 2018], study temporal problems where multiple actions are available at each
time step. The aim of the field is to come up with an optimal policy either from the start or,
in the partially observable case, a mechanism that quickly converges to the optimal policy.
In the latter the regret is considered to be how much utility is lost compared to using the
optimal policy from the start. The methods underlying this, like dynamic programming,
are used in a variety of fields such as; playing go [Silver et al., 2018], in dynamic treatment

6This assumption underlies the fundamental point of a risk score
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strategy [Alaa and van der Schaar, 2018] and mechanical and electrical engineering. Here
we use the formulation of a Partially Observable Markov Decision Processes (POMDP)
[Yuksel, 2017], and adopt the notation from [Wang et al., 2019] whereby we consider the
POMDP as a 7-Tuple (S,A, T ,R,Ω,Z, γ):

• S,A and Ω are spaces of states, actions and observations.

• T is the transition kernel that describes the evolution given state and action, e.g.
se+1 ∼ T (· | se, ae) (i.e. a set of conditional transition probabilities between states
and actions).

• Z is a kernel for the observation given the state, e.g. oe+1 ∼ Z(· | se, ae)7.

• re represents our reward for being in state s and taking action a at time (or equiva-
lently epoch) e, and is sampled from R - i.e. re ∼ R(se, ae)

• γ is a discount factor that down-weighs future rewards if 0 < γ < 1.

A solution candidate is a policy

ae ∼ π
(
{os, rs, as}e−1s=1

)

which aims to maximise

E
M∑

e=1

γe−1r(se, ae)

where M represents the maximum number of time/epoch steps. Other reward/utility
parametrisations are possible e.g. to include a final pay off or infinite time horizon pay
off. Several options for reward function construction are detailed in [Liu et al., 2014, Yu
et al., 2019, Wirth et al., 2017]. The beauty of this framework is the flexibility: aspects
such as optimisation under uncertainty can be included by including parameters of reward,
transition and observation processes into the (unobserved) state variable.

We cast the above in this framework:

se = (Xe(0), Xe(1), Ye)

ae = ρe

oe = ((Xs
e (0), Xa

e (0)), Ye)

re = P
(
Ȳe+1 | se, ae

)

with Ȳ corresponding to the rate of events in total population.

7Note that here future observations depend on current states and actions and not on future states and
actions
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The transition kernel from se to se+1 consists of; sampling Xe+1(0) (note that this
sampling is independent of se), intervening using this sample with ρe to form Xe+1(1),
and then using these values to sample Ye+1 from the resulting conditional distribution.
Finally we note that given Assumption 5 our policy ae ∼ π(oe, re, ae) as previous epochs
are ignored. Indeed, this assumption also implies that se+1, oe+1 and re only depend on
the previous state through ae = ρe. In the control view point it is also easy to formulate
the longitudinal problem (this corresponds to setting Xe+1(0) = Xe(1)).

The description above allows to use methods of the field such as Q-learning, (approxi-
mate dynamic programming), PDE-based approaches such as the Hamilton Jacobi Bellman
equation and many more. These methods create a policy which maps the historical obser-
vations to an action (for the problem at hand a risk score function). Most of the rigorous
methods require a low dimensional state space [Powell, 2007].

7 Discussion

In this work, we elaborate on the issue raised by Lenert and Sperrin [Lenert et al., 2019,
Sperrin et al., 2019] and propose a framework for quantitatively modelling its effects,
with a particular focus on a model which is updated repeatedly. We demonstrate some
consequences of ignoring this problem, and note that they occur even in highly idealised
circumstances. Although the problem can generally be avoided by more complex and
complete modelling, we consider that this is often impractical: a full consideration of the
setting in which a model will eventually be used is not generally considered until the model
is to be implemented [Lipton and Steinhardt, 2018].

The formulation of the constrained optimisation problem in section 2.3 makes it clear
that for fixed g`, ga, the best possible ρe is not necessarily the oracle estimator in equa-
tion 3. However, many machine learning models tend to focus on accurate prediction of
outcomes [Nashef et al., 2012], rather than directly solving problems of the type in sec-
tion 2.3; hence, the naive updating setting considers a ρe which does exactly this. In the
naive updating setting, we are assuming an analyst who ignores this effect.

The model presented here is not a full description of modern predictive scoring systems;
however, it is extensible in various ways (some detailed in Supplementary Section 12). In
particular, g` and ga could be random-valued rather than deterministic. We also note that
we assume a covariate value after intervention confers the same contribution to risk of Y
as it does when it takes the same value ‘naturally’, which may not be realistic.

We assume we are ‘starting over’ with new samples at the beginning of each epoch, and
for naive updating, we assume that covariate values are identically distributed. The basis
for this assumption is that we generally expect interventions to be zero-sum: that is, the
risk score guides a redistribution of intervention rather than introduction of interventions,
so the total effect on the sample population remains roughly the same in each epoch. In
this assumption, we differ from that in the analysis by Lenert [2019]. We can alternatively
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interpret this assumption as taking all interventions as being short-term and having ‘worn
off’ by the start of the next epoch. The problem raised here also exists for the more general
setting when interventions have long term effects and we consider longitudinal effects.

An important consideration in model updating is ‘stability’ of successive predictions: in
our setting, whether successive values of ρe converge. Colloquially, we can take ’stability’ to
mean that if the underlying system being modelled does not change, then updating a model
will leave it unchanged; the model predicts its own effect. General conditions for stability
are considered in Perdomo et al. [2020] , who differentiate between stability in which ρ
optimises a loss given its own effect, and ‘performative optimality’, in which ρ globally
optimises a loss. Although we highlight that stability does not generally guarantee that
the model is getting the best outcome (according to the constrained optimisation problem
in section 2.3), we note that stability has real-world advantages: in particular, trust in a
model will generally be better if it appears to be stable.

In the setting where models change at each epoch, if mf̃e
is known at the current epoch

e, we note a fair comparison of models is one which compares models built using the training
data available at the current epoch8. If mf̃e

is not known, then a holdout set for test data

must be used so a fair comparison can be made using an estimate of mf̃0
(assuming f̃0 ≈ f).

This is because at epoch e we only have access to (Xe(0), Ye) and not Xe(1), and so we
are not able to properly gain insight to the behaviour of f̃e needed to provide an estimate
of mf̃e

. An attempt to estimate mf̃e
using (Xe(0), Ye) implicitly assumes that Ye directly

depends on Xe(0), and as a result ρe would appear much closer to f̃e than is the case. Put
simply, by implementing naive model updating not only may performance severely worsen
(even if better models were used), but in not providing a holdout test set stakeholders
may not even be able to recognise that performance is worsening as the number of epochs
increase.

In essence, we provide a causal framework within which to understand a crucial issue in
regulation of machine learning and AI-based tools in health and further afield, demonstrat-
ing that approaches which incorporate naive updating are unlikely to be fit for purpose.
Moreover, even where solutions are available to address the bias introduced by updating on
‘real-world’ data in which outcomes represent (at least in part) the effects of an algorithm,
these restrict the potential of ‘online’ and frequently updated solutions. We hope that
our work will foster discussion of this interesting problem, which is becoming increasingly
pertinent as machine-learning based predictive scores become widely used to guide decision
making, and policymakers act to address how to regulate these tools to ensure safety and
effectiveness.

8This is not to say that the performance of models will not deteriorate over epochs, just that the issue
may not lie with the model structure.
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Code availability

Code to reproduce relevant plots and examples is available at github.com/jamesliley/

model_updating.
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Model updating after interventions paradoxically introduces

bias
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February 23, 2021

8 Example of functions and variables in a realistic setting

We consider the model proposed by Rahimian et al. (2018) for prediction of emergency
admission to a hospital in a given time period on the basis of electronic health records
(EHRs). Such a model is not in common use in the location considered (England), so
the data in the original paper is not affected by the problems we describe in the main
manuscript.

For clarity1, we presume a prediction window of ten months (February-November), and
that predictions are made and distributed to primary health practitioners in January, with
a new model being trained on the basis of each year’s data in December, to be implemented
the following January. In this setting, distribution of the score may open a second causal
pathway between covariates and outcome as shown in figure 1, and is thus susceptible to
the problems of naive updating.

In this setting, variables and functions may be interpreted as follows:

1. Y the event ‘an emergency admission in the following year’

2. Xe(0) the values of all variables which affect E(Y ) at the time when the predictive
score is computed (the start of each year)

3. An ‘epoch’: the time in which a given model is in use; eg, each year.

4. ‘Time’: t = 0 when the predictive score is computed (the start of January); t = 1
represents the time after which any interventions are made (the start of Feburary).

5. Xs
e covariates affecting E(Y ) which are included in the predictive score but which

cannot be directly modified in the time frame: age, time since most recent emergency
admission

1Analogous times and variables can be described for other prediction periods and updating patterns
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6. Xa
e covariates affecting E(Y ) included in the predictive score which can be modified

in the time frame: current medications.

7. X`
e covariates affecting E(Y ) which are not included in the predictive score, and

possibly can be modified in the time frame: blood pressures, cardiac function

8. fe the underlying causal process for Y given patient status; that is, the probability
of admission in the subsequent year, given covariates.

9. gae Hypothetical prescribed interventions made on Xa in response to a predictive
score; for instance, reduce drug dosages. We roughtly assume that this intervention
is symmetric; for a patient at low emergency risk, a higher drug dose is acceptable.

10. g`e Hypothetical prescribed interventions made on X` in response to a predictive
score; for instance, treat low or high blood pressure.

It is clear that if such a risk score were used universally, and data was collected from the
period in which a model was in place was then, then the data would be affected by the
effect of the predictive score itself.

The model does not fully describe this setting. The trichotomisation into X`, Xa, and
Xs is not perfect; intervention on XL could also affect some variables in Xa and vice versa.
Interventions are likely to be random-valued to some extent.

9 Alternative system described by naive updating

We note that the definition of h (equation (9) in main text), and hence the following com-
ments on recursion dynamics, can be used to describe a related setting in which we track
the same samples over epochs, and the effect of interventions ga, g` remain in place. For-
mally, we retain definitions of Xs, Xa, X`, e, t, fe, g

a
e , g

`
e, ρe and all assumptions except 4,7

from the main text. In place, we assume that fe, g
a
e , g`e are fixed across epochs, but instead

of resampling Xe(0) from µe, we have

Xe+1(0) = Xe(1) (17)

thus, while values X0(0) are sampled from the distribution µ0, values Xe(0) are then
determined for e > 0. We illustrate this in figure 5. Now formulas (8), (9) in the main text
will hold, and the recursion will proceed as detailed in theorem 1 in the main text
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Figure 5: Diagram showing alternative setup for naive updating. Values xs, xa, x` are
sampled at (e, t) = (0, 0), and used to determine ρ0. Values are conserved until t = 1, and
remain the same at the start of epoch 1 ((e, t) = (1, 0)). Values are intervened on by ga, g`

according to ρ0 (xs1(0), xa1(0))), and resultant values at (e, t) = (1, 1) are conserved until the
start of the next epoch at (e, t) = (2, 0). Lowercase leters indicates that, while quantities
random-valued, they inherit all randomness from their values at (e, t) = (0, 0). Colour and
line conventions are as for figure 2 in the main text

10 Proofs and counterexamples

10.1 Optimising both ρ and ga, g` is equivalent to a general resource
allocation problem

Consider the constrained optimisation problem in section 2.3 in the main text. We show
that if we allow ρ and ga, g` to vary independently, then the constrained optimisation is
equivalent to the solution of a problem in which the use of a predictive score is redundant.

Theorem 3. Suppose that the triple (ρopt, g
a
opt, g

`
opt) minimises quantity (4) subject to

constraint (5) in section 2.3 in the main text, where all are arbitrary functions of two
variables in the appropriate range. Let haopt and h`opt be solutions to a second constrained

optimisation problem: find ha(xs, xa) and h`(xs, xa, x`) which minimise

EXe(0){f(Xs,

ha(Xs
e (0), Xa

e (0)),

h`(Xs
e (0), Xa

e (0), X`
e(0)))} (18)

subject to

EXe(0){ca(Xa
e (0),

Xa
e (0)− ha(Xs

e (0), Xa
e (0)))+

c`(X`
e(0),

X`
e(0)− h`(Xs

e (0), Xa
e (0), X`

e(0)))} ≤ C (19)
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with ca, c`, f as for section 2.3.
Then the minima of quantity (4) in the main text and of quantity (18) achieved by

(ρopt, g
a
opt, g

l
opt) and (haopt, h

`
opt) are the same.

Proof. Given a tuple (ρopt, g
a
opt, g

l
opt), we explicitly construct an (haopt, h

`
opt) which attains

the same minimum, and vice versa.
Given (ρopt, g

a
opt, g

l
opt), the corresponding forms of haopt, h

`
opt are simply

haopt(x
s, xa) = gaopt (ρ(xs, xa), xa)

h`opt(x
s, xa, x`) = g`opt

(
ρ(xs, xa), x`

)

(20)

Given haopt, h
`
opt, the correspondence is slightly more complex. Set ρopt as a bijective

function from Rns+na to R; for instance, set it to ‘splice’ the decimal digits of arguments
together. Now set gaopt, g

`
opt to firstly ‘decrypt’ the value of ρopt back into constituent parts

(xs and xa), and then compute haopt(x
s, xa) and h`opt(x

s, xa, x`) as outputs.
This shows that the two constrained optimisation problems are equivalent.

We note that this implies that optimising (ρ, ga, g`) jointly is equivalent to a more
general treatment-allocation problem which does not involve a predictive score.

10.2 Counterexample showing naive updating can cause better models
to appear worse

For this counterexample we shall use the following set up:

f(xs, xa, x`) =f(xs, xa) = (1 + e−x
s−xa)−1 (21)

ρ0(x
s, xa | X?

0 , Y
?
0 ) =





∑n
i=1(Y

?
0 )i1{

∑2
j=1(X

?
0 )ij>0}

∑n
i=1 1{

∑2
j=1(X

?
0 )ij>0} xs + xa > 0

∑n
i=1(Y

?
0 )i1{

∑2
j=1(X

?
0 )ij≤0}∑n

i=1 1{
∑2

j=1(X
?
0 )ij≤0}

xs + xa ≤ 0
(22)

ρ1(x
s, xa | X?

1 , Y
?
1 ) =(1 + e−β̂0−x

sβ̂1−xaβ̂2)−1 where β̂ = argmax{L(β|X?
1 , Y

?
1 )} (23)

mf̃e
(ρe|X?

e , Y
?
e ) =Eµ [|f(Xs, ga(ρe−1, Xa))− ρe(Xs, Xa | X?

e , Y
?
e )|] (24)

ga(ρ, xa) =(1− ρ)(xa + 3) + ρ(xa − 3) (25)

For simplicity, we shall view the latent variables as having no effect on the true risk score
f , which corresponds to the scenario where (if no interventions are made), it is possible
with the data we observe to fully specify f . For the purpose of the counterexample it is
reasonable to do this as model performance only requires mf̃e

, which has no dependence
on latent covariates.
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We also state, that due to the omission of latent covariates, Xe(0) = (Xs
e (0), Xa

e (0)) ∼
N2(0, I2), which is then used to generate (through the statistical program R) an initial
training data set at epoch 0, of size n = 100, which is summarised below:

index (X?
0)·1 (X?

0)·2 Y?
0

1 1.185 1.272 1

2 0.881 -0.995 0

3 0.122 -0.956 0
...

98 -0.826 1.779 1

99 0.853 0.151 1

100 0.177 0.805 1

This training data can then inputted into ρ0 to give the following function:

ρ0(x
s, xa | X?

0 , Y
?
0 ) =

{
0.733 xs + xa > 0

0.200 xs + xa ≤ 0
(26)

When intervening on any covariates at epoch 1 the function given in equation (26) will be
used to produce X1(1) and subsequently Y1.

We now consider E(X?
0 ,Y

?
0 )

[
mf̃0

(ρ0|X?
0 , Y

?
0 )
]
, which we approximate using a Monte

Carlo estimate with 1000 samples. However, mf̃0
(ρ0|X?

0 , Y
?
0 ) also requires approxima-

tion, and so a Monte Carlo estimate with the same number of samples is also used for this
function. The procedure is as follows:

1. For i from 1 to 1000:

(a) Obtain a training data set , (X?
0 , Y

?
0 )i, by taking n samples of (X0(0), Y0).

(b) Use this training data set to obtain a (ρ0)i of the form given in equation (26).

(c) For j from 1 to 1000:

i. Sample (xs, xa)j ∼ X0(0).

(d) mf̃0
(ρ0|(X?

0 , Y
?
0 )i) ≈ 1

1000

∑1000
j=1 |f((xs, xa)j)− ρ0((xs, xa)j | (X?

0 , Y
?
0 )i)|

2. E(X?
0 ,Y

?
0 )

[
mf̃0

(ρ0|X?
0 , Y

?
0 )
]
≈ 1

1000

∑1000
j=1 mf̃0

(ρ0|(X?
0 , Y

?
0 )i)

With this in mind, we give the following approximation: E(X?
0 ,Y

?
0 )

[
mf̃0

(ρ0|X?
0 , Y

?
0 )
]
≈

0.124.
If we assert that interventions never take place, then we can use the same procedure

described above to obtain E(X?
0 ,Y

?
0 )

[
mf̃0

(ρ1|X?
0 , Y

?
0 )
]
≈ 0.056. So here we can clearly

5



see that in the setting where interventions are never made, E(X?
0 ,Y

?
0 )

[
mf̃0

(ρ0|X?
0 , Y

?
0 )
]
>

E(X?
0 ,Y

?
0 )

[
mf̃0

(ρ1|X?
0 , Y

?
0 )
]
, and so the model closer to the truth is the logistic regression

model at epoch 1. If agents were allowed to make interventions (based on ((26))) however,

we would consider E(X?
1 ,Y

?
1 )

[
mf̃1

(ρ1|X?
1 , Y

?
1 )
]
≈ 0.197 instead. Now, since E(X?

0 ,Y
?
0 )

[
mf̃0

(ρ0|X?
0 , Y

?
0 )
]
<

E(X?
1 ,Y

?
1 )

[
mf̃1

(ρ1|X?
1 , Y

?
1 )
]
, we would come to the incorrect conclusion that the model closer

to the truth is the model used at epoch 1. Consequently we can state that, given the setup
provided in section 3.1,

E(X?
0 ,Y

?
0 )

[
mf̃0

(ρ0|X?
0 , Y

?
0 )
]
> E(X?

0 ,Y
?
0 )

[
mf̃0

(ρ1|X?
0 , Y

?
0 )
]
6=⇒

E(X?
0 ,Y

?
0 )

[
mf̃0

(ρ0|X?
0 , Y

?
0 )
]
> E(X?

1 ,Y
?
1 )

[
mf̃1

(ρ1|X?
1 , Y

?
1 )
]

(27)

Additionally, we show that for this example:

E(X?
0 ,Y

?
0 )

[
mf̃0

(ρ0|X?
0 , Y

?
0 )
]
> E(X?

0 ,Y
?
0 )

[
mf̃0

(ρ1|X?
0 , Y

?
0 )
]
6=⇒

E(X?
0 ,Y

?
0 )

[
mf̃0

(ρ0|X?
0 , Y

?
0 )
]
> E(X?

1 ,Y
?
1 )

[
mf̃0

(ρ1|X?
1 , Y

?
1 )
]

(28)

as E(X?
1 ,Y

?
1 )

[
mf̃0

(ρ1|X?
1 , Y

?
1 )
]
≈ 0.215 > 0.124 ≈ E(X?

0 ,Y
?
0 )

[
mf̃0

(ρ0|X?
0 , Y

?
0 )
]
. This state-

ment is given here because for f̃0, and therefore mf̃0
, it is possible to gain estimates through

a holdout test data set. Whilst the comparison is not between a risk score (ρe) and the
function it is trying to estimate (f̃e), the effect of deteriorating performance as epochs in-
crease is still captured. Going further, it is assumed that if stakeholders were implementing
naive model updating, they would assume that ρe is estimating f̃0 for all epochs as the
belief is that interventions do not effect the model. Therefore, comparison with f̃0 will
heighten the impression to stakeholders that using an updated model structure is causing
performance to deteriorate, especially for epoch 0 to epoch 1, where for this comparison
ρ0 is actually estimating f̃0.

We expect from a stakeholders view that comparison (using estimates) between the
two models at successive epochs usually leads to the inequality mf̃0

(ρe−1 | X?
e−1, Y

?
e−1) <

mf̃0
(ρe | X?

e , Y
?
e ), and therefore the conclusion is that the new model leads to worse per-

formance. We advise that a conclusion is only reached after further comparison is done
between mf̃0

(ρe−1 | X?
e , Y

?
e ) and mf̃0

(ρe | X?
e , Y

?
e ), as this gives an indication whether the

drop in performance is due to the model structure or the intervention effect.
Finally, we advise caution when considering the effect of latent variables when estimat-

ing mf̃0
(ρe|X?

e , Y
?
e ). This is due to that fact that when holdout test data is used to obtain

an estimate, it is an estimate of f rather than an estimate of f̃0. If the latent variables
have a small influence on f than f ≈ f̃0 and we can make inferences as shown above,
but if latent variables have a large influence on f then our comparison is not based on

6



mf̃0
but instead on mf . This creates a problem as now how well we perceive our model’s

performance can be determined largely by how well a model arbitrarily captures the latent
covariate information using just the set and actionable covariates. It therefore becomes
substantially more difficult to determine whether the cause of a models poor performance
is due to the model, the intervention effect or insufficient data. As a general rule however,
large values of mf̃0

(ρ0|X?
0 , Y

?
0 ) should indicate that either the initial model is very poor

or that there is insufficient data, but in either case careful consideration of what could
possibly influence the underlying mechanism should be made before a risk score is built
and given to agents, to ensure that latent variables affect the model as little as possible.

10.3 Proof of theorem 1

If h′(z0) ≤ −1 then the single fixed point of h is unstable and ρe cannot converge to it
unless it was always equal to z0. There can be no other z with h(z) = z0 since h′(z) < 0
by assumption.

Since ρe ∈ [0, 1] and h′(z) < 0, ρe must tend toward a stable oscillation between two
values, or converge to a single value.

If the bounds on partial derivatives hold, then from the triangle and Cauchy-Schwarz
inequalities, for z ∈ R

|h′(z)| ≤ EXL



pa∑

i

|δgai δ
fa

i |+
pL∑

i

|δg`i δ
f`

i |




=

pa∑

i

|δgai |EX`

[
|δfai |

]
+

p`∑

i

EX`

[
|δg`i δ

f`

i |
]

≤

√√√√
pa∑

i

(δg
a

i )2
pa∑

i

EX`

[
δf

a

i

]2

+

√√√√
p`∑

i

EX`

[(
δg

`

i

)2] p`∑

i

EX`

[(
δf

`

i

)2]

≤
√
k1k3 +

√
k2k4 < 1 (29)

so the map h : ρe → ρe+1 is a contraction, and the convergence of the recurrence ρe → ρe+1

follows from the Banach fixed-point theorem, as long as ρe ∈ R for some value of e.
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10.4 Proof of theorem 2 in main text

Proof. The function f−1(x) is well-defined and one-to-one given assumptions 2, 3 from the
theorem statement. Now

ρe+1 = ρe+1(x
s, xa)

= f
(
xs, gae+1(ρe, x

a)
)

(30)

= f (xs, ga(ρe, g
a
e (ρe−1, xa)))

= f
(
ga(ρe, f

−1(ρe))
)

, h2(ρe) (31)

and we have

h2(ρeq) = f
(
xs, ga(ρeq, f

−1(ρeq))
)

= f
(
xs, f−1(ρeq)

)

= ρeq (32)

so ρeq is a fixed point of the recursion for ρe. It can be the only fixed point; by definition
there is only one value of ρ with g(ρ, x) = x, and hence for ρ 6= ρeq we have ga(ρ, f−1(ρ)) 6=
f−1(ρeq). But from assumption 3 in the theorem statement this must mean that h2(ρ) =
f(ga(ρ, f−1(ρ)) 6= f(f−1(ρ)) = ρ.

Given the condition on the derivative of h2(ρ) for ρ ∈ I, the first result follows from
the Banach fixed-point theorem. The second is immediate as the LHS is simply ρe(x

s, xa).
The third follows from an inversion of equation (30).

10.5 Counterexample showing failure of naive updating to generally solve
constrained optimisation problem

For this counterexample, we do not need to consider latent covariates, and will assume
they do not exist.

Under the setting in section 2.2 in the main text, if ρn converges to ρ∞(xs, xa) for some
xs, xa under naive updating, then we have

ρ∞(xs, xa) = h(ρ∞(xs, xa) = f(g(ρ∞(xs, xa), xa), xs) (33)

Suppose xs and xa each have dimension 1, and consider the example:

f(xa, xs) = logit(xa + xs) =
1

1 + exp (−(xa + xs))

g(ρ, xa) = xa − log(1 + ρ)

ca(x) = x

8



For a given function ρ, the objective and cost are, respectively

obj{ρ} = E
{

(1 + (1 + ρ) exp(−(Xs +Xa)))−1
}

cost{ρ} = E {log(1 + ρ)} (34)

Using an oracle predictor of Y |X, as in the previous section, ρn converges to the fixed point
of the recursion z → f(g(z, xa), xs), which is

ρ∞(xs, xa) =
1

2

(√
(ex+y + 1)2 + 4ex+y −

(
ex+y + 1

))
(35)

To see why this is not optimal, suppose Xa, Xs have a discrete distribution taking either
of the values (0,−1), (0, 1) with probability 1/2. Then

cost{ρ∞} =
log(2)

2
≈ 0.346

obj{ρ∞} =
1 + e

1 + e+
√

1 + 6e+ e2
≈ 0.428

However, consider some ρ0 with ρ0(0,−1) = 0, ρ0(0, 1) = 1. Now

cost{ρ0} =
log(2)

2
= cost{ρ∞}

obj{ρ0} =
1

2

(
1

1 + e
+

e

2 + e

)
≈ 0.423 < obj{ρ∞} (36)

10.6 Simple example of updating leading to oscillation

Define g(ρ, xa) as above, and instead define

f(xa, xs) = logit (−k(xa + xs)) (37)

As usual, we presume that to estimate ρ, we regress Y on Xs
0 , Xa

0 , and we do it accurately
enough to presume ρ is an oracle. Now

h(x) =
1

1 + (1 + x)k exp (−k(xs + xa))

h′(x) = −k ek(x
s+xa)(1 + x)k−1

(
ek(xs+xa) + (1 + x)k

)2 (38)

Consider a setting when xs = xa = 0 and k = 8. Now h(0) = 1/2 > 0 and h(1/5) ≈
0.189 < 1/5. For x ∈ (0, 1) we have h′(x) < 0, so the equation h(x) = x has a single
solution in (0, 1/5). But on (0, 1/5), we have h′(x) < −1. So if x0 is the unique root of
h(x)− x on x ∈ (0, 1) then h′(x0) < 0

9



Now as long as ρ0(x
s, xa) is not exactly the value of x for which h(x) = x, if we update

ρn using h, it can never converge as the fixed point of the map h is unstable.
Conceptually, although no intervention changes xa very much, the function f is very

sensitive to small changes in xa when k = 8, so a small change in xa will necessarily cause
a larger change in f(xa, xs) when ρ is near the fixed point of h.

11 Comparison of solution/avoidance strategies

We briefly compare advantages and disadvantages of the general strategies identified in
section 5 to avoid or overcome problems associated with naive updating.

Any of the three strategies can be used to avoid the naive updating problem if they
enable an unbiased estimate of

E
[
fe

(
xs, xa, X`

)]
(39)

to be obtained, where the expectation is over X` either before or after intervention. The
expectation (39) can be recognised as the quantity for which ρe is treated as an estimator.
More frequent covariate observation as per section 5.1 allows this by enabling observation
of Xe(1), so such an unbiased estimate may be obtained by regression of Ye on observed
Xe(1). The strategy in section 5.2 defines a hold-out subset of samples X?

e , Y ?
e for which

X?
e (1) = X?

e (0), so an unbiased estimate of (39) can be obtained by regression of Y ?
e on

(observed) X?
e (0) will work. Finally, the strategy in section 5.3 specifies gae and g`e, so an

unbiased estimate of (39) can be made by regressing Ye on XS
e (0), gae (ρe, X

a
e (0)).

Although all three solutions avoid the problems of naive updating, they ‘solve’ some-
what different problems and require different experimental designs. The class of strategies
described in section 5.1 (a range of modelling approaches generally requiring more frequent
covariate observation) can solve the constrained optimisation problem in section 2.3 over ρ.
The strategy described in section 5.2 (retention of a ‘hold-out’ set on which no interventions
are made) simply enables unbiased observation of fe. The strategy described in section 5.3
(explicit control of interventions ga, g`) solves the constrained optimisation problem over
ga, g`.

However, solutions may be quantitatively compared with an aim of recommending
which (if any) might be most appropriate in a given circumstance. If possible, the strategy
in section 5.1 should be used if possible, as it enables the greatest flexibility in approach.
The strategy in 5.3 should be used alternatively or additionally if appropriate.

The strategy in section 5.2 is advisable as a general approach if covariates cannot be
observed more frequently and interventions cannot be controlled (that is, neither of the
other strategies are actionable).

10



11.1 Illustration of solutions

We consider how each strategy may appear in the context of the setting described in
Supplementary section 8.

The strategy in section 5.1 would comprise re-observing covariates in February (t = 1)
after interventions are made. Under this closer observation (allowing inference of ga and
E(f)), ρe could be set so as to optimise healthcare provision.

The strategy in section 5.2 would require nomination a random sample of the population
on which scores would not be calculated, and hence on which no intervention could be made
on the basis of a risk score. This would enable observation of ‘native’ covariate effects on
risk.

The strategy in section 5.3 would implement specific interventions: for instance, ‘if ρe >
50%, stop drug X’. Interventions could then be tuned to optimise healthcare provision.

12 Open problems

We propose the following short list of open problems in this area.

1. Determine a framework to modulate both g` and ga with the aim of solving the
constrained optimisation problem in section 2.3 in the main text.

2. Determine the dynamics and consequences of other model-updating strategies. What
happens if training data is aggregated at each step, rather than only the most recent
data being used?

3. Derive results of successive adjuvancy in more general circumstances.

4. How do the dynamics of the model change when assumptions differ? Can f , g`

and ga be extended to be random-valued, and possibly agglomerated into a single
intervention function?

5. How can assumptions be changed to approximate more general machine learning
settings?
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