
Data Science and Statistical Computing

Tutorial 6, Week 21 Solutions

Q1
We first find Ef [g(X)].

Ef [g(X)] =
∫
R

g(x)f(x) dx

=
∫ 1

0
x2 dx (NB limits determined by f )

= x3

3

∣∣∣∣1

x=0

= 1
3

Ef̃

[
g(X)f(X)

f̃(X)

]
=

∫
R

g(x)f(x)
f̃(x)

f̃(x) dx

=
∫ 1

2

0

x2

2
× 2 dx (NB limits determined by f̃ )

=
∫ 1

2

0
x2 dx

= 1
24

This is to illustrate the importance of the requirement that f̃(·) be a pdf such that f̃(x) > 0 whenever
g(x)f(x) ̸= 0 in order for importance sampling to be valid! This condition is clearly violated for the
choices of f(·), f̃(·) and g(·) above.

Q2
(a)

Ef [X] =
∫

Ω
xf(x) dx

=
∫ 1

0
x(2x) dx

= 2
3

(b)

µ̂n = 1
n

n∑
i=1

xi

Var(µ̂n) = Var(g(X))
n

Now g(X) = X here, and
Var(X) = E[X2] − E[X]2
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We know E[X] from part (a), so just need,

E[X2] =
∫

Ω
x2f(x) dx

=
∫ 1

0
x2(2x) dx

= 1
2

Thus,

Var(X) = 1
2

−
(

2
3

)2

= 1
18

≈ 0.0556

Therefore,
Var(µ̂n) = 1

18n

(c)

µ̂n = 1
n

n∑
i=1

wixi

where
wi = f(xi)

f̃(xi)
= 2xi

αxα−1
i

= 2α−1x2−α
i

Thus, in full,

µ̂n = 1
n

n∑
i=1

2α−1x3−α
i

Next, for the variance, we know from lectures,

Var(µ̂n) =
σ2

f̃

n
where σ2

f̃
=

∫
Ω̃

(
g(x)f(x) − µf̃(x)

)2

f̃(x)
dx,

and recall that here g(x) = x and from (a) µ = 2
3 . Thus, (not necessary to show all these small steps,

but providing full detail for solutions …)

σ2
f̃

=
∫

Ω̃

(
g(x)f(x) − µf̃(x)

)2

f̃(x)
dx

=
∫ 1

0

(
x(2x) − 2

3 αxα−1)2

αxα−1 dx

=
∫ 1

0

4
9

α−1x1−α
(
3x2 − αxα−1)2

dx

=
∫ 1

0

4
9

α−1x1−α
(
9x4 − 6αxα+1 + α2x2α−2)

dx

=
∫ 1

0

4αxα−1

9
+ 4x5−α

α
− 8x2

3
dx

= 4xα

9
+ 4x6−α

α(6 − α)
− 8x3

9

∣∣∣∣1

x=0
assuming 0 < α < 6

= 4
α(6 − α)

− 4
9

Note: the distribution f̃ only required α > 0, but this variance calculation now only holds for α ∈ (0, 6).
This arose because the x = 0 end of the integral is indeterminate for the term x6−α if α > 6 and 1

6−α is
indeterminate if α = 6.

=⇒ Var(µ̂n) = 4
nα(6 − α)

− 4
9n

, α ∈ (0, 6)
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(d)

We are interested in values of α for which it is true that,

4
α(6 − α)

− 4
9

<
1
18

=⇒ 4
α(6 − α)

<
1
2

Now, the variance only holds for α ∈ (0, 6), so α(6 − α) is always positive. Thus we may rearrange
without fear of flipping the inequality. So,

=⇒ 8 < α(6 − α) for α ∈ (0, 6)
=⇒ 0 < (2 − α)(α − 4) for α ∈ (0, 6)

Now (2 − α)(α − 4) is quadratic in α with negative coefficient on the square term, so this inequality
holds only between the roots.

Thus, the variance of importance sampling is smaller than standard Monte Carlo when using proposal
f̃(· | α) for any α ∈ (2, 4).

(e)

f̃opt(x) = |g(x)|f(x)∫
Ω |g(x)|f(x) dx

Recall, here g(x) = x, so

f̃opt(x) = |x|2x∫ 1
0 |x|2x dx

But, since f(x) is only non-zero on [0, 1], the absolute value can be dropped and we find the optimal
proposal is simply:

f̃opt(x) = 3x2

Yes, this does belong to the family f̃(· | α), corresponding to the case α = 3.

Using part (c), this tells us the variance when using this estimator is:

Var(µ̂n) = 4
nα(6 − α)

− 4
9n

= 4
n3(6 − 3)

− 4
9n

= 0

Zero variance!?! Note, this implies that if I take even one simulation from f̃(· | α = 3) that the estimator
µ̂1 will be exactly correct … does this make sense? Yes! Because also from part (c), we have,

µ̂n = 1
n

n∑
i=1

2α−1x3−α
i

= 1
n

n∑
i=1

2 × 3−1x3−3
i

= 1
n

n∑
i=1

2
3

= 2
3

≡ µ

3



Note: this is obviously a situation we would never be in when using importance sampling for a real
problem which actually required it! Usually, the optimal proposal is inaccessible to us, because to get
it we would need to be able to do the original integral anyway … the point here is to hightlight that if
we can get close to approximating the optimal proposal, then clearly we can dramatically reduce the
variance of our estimator.

Q3
Here, the weight for a sample xi from f̃ will be:

wi = f(xi)
f̃(xi)

= λe−λxi

ηe−ηxi
= λ

η
e−(λ−η)xi

Now xi ∈ [0, ∞) since the Exponential distribution is on the half real line. Notice the term e−(λ−η)xi …
in order for the weights to be bounded for all possible xi, we need λ − η > 0. Thus, the weights are only
bounded for η < λ.
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