
Data Science and Statistical Computing

Assignment 2 Solutions

Q1

Write down the formula to compute xi given (wi, γi) for day i. Hence, or otherwise, write
down a formula for the statistic S(w, γ) which computes the mean wind power generation
rate, given vectors of wind speed and angle of incidence for n days, w = (w1, . . . , wn), γ =
(γ1, . . . , γn).

xi = wi cos γi

=⇒ S(w, γ) = 1
n

n∑
i=1

V (wi cos γi)

where V (·) is as given in the question.

Q2

Compute the mean power generation rate, S(w⋆, γ⋆), for the bootstrap resample:

(w⋆, γ⋆) =
(
(w2, γ2), (w3, γ3), (w1, γ1), (w2, γ2)

)
Also, what is the largest value S(w⋆, γ⋆) could take for any possible bootstrap resample?
NOTE/HINT: resampling is done for days, since there is some unknown joint distribution
for (wi, γi) … hence the same index must always apply to the individual resamples of wind
and angle or else the joint distribution is violated (eg (w2, γ2) is valid, but (w2, γ4) is not
valid)

We extend the table in the question to compute the power for each observation:

Day i wi γi xi V (xi)
1 6.9 -54 6.9 cos(−54) = 4.056 V (4.056) =

200(4.056) − 200
= 611.2

2 6.0 72 6.0 cos(72) = 1.854 V (1.854) =
200(1.854) − 200

= 170.8

3 4.5 80 4.5 cos(80) = 0.781 V (0.781) = 0 = 0
4 1.9 29 1.9 cos(29) = 1.662 V (1.662) =

200(1.662) − 200
= 132.4

S(w⋆, γ⋆) = 1
4

(
2V

(
6 cos 72

)
+ V

(
4.5 cos 80

)
+ V

(
6.9 cos(−54)

))
= 1

4

(
2
(
170.8

)
+

(
0
)

+
(
611.2

))
= 238.2

The largest value S(w⋆, γ⋆) could take is when,

(w⋆, γ⋆) = ((w1, γ1), (w1, γ1), (w1, γ1), (w1, γ1))

when we would have S(w⋆, γ⋆) = 611.2.
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Q3

Bootstrap simulation for the data above gives S̄⋆ = 228.56 and V̂ar
(
S(w, γ)

)
= 13350. Com-

pute the 95% Normal confidence interval (CI) and comment on whether you consider there
to be any appreciable bias in the mean estimator.

The 95% Normal confidence interval is given by:

θ̂ ± z0.025

√
V̂ar(S(x))

Here, θ̂ = 1
4 (611.2 + 170.8 + 0 + 132.4) = 228.6, so the CI is

228.6 ± 1.96
√

13350 = 228.6 ± 226.5 = [2.1, 455.1]

NOTE: the confidence interval should be centred on θ̂ = S(x) and not on S̄⋆, although in this particular
case it would make almost no difference.

In this setting,
b̂ias(θ, θ̂) = S̄⋆ − θ̂ = 228.56 − 228.6 = −0.04

The estimated bias, −0.04, should be looked at in relation to the scale of the estimator, 228.6. Here, we
would clearly attribute such a small bias on the estimator scale to sampling variation and conclude this
is most likely an unbiased estimator.

Q4

Following are sorted bootstrapped values for S(w⋆, γ⋆) and how often they occured (‘Freq’).
The total number of bootstrap replicates (sum of ‘Freq’) is B = 1000. Find a 95% CI for
the mean power generation rate by the percentile method. Comment on the resulting CI
compared to the Normal interval.

The percentile methods means we are seeking the values at the empirical 2.5% and 97.5% quantiles.
Thus for 1000 resamples, for the 25th and 975th ordered values. From the tables,

5 + 15 = 20 + 21 = 41
3 + 14 = 17 + 16 = 33

Thus, the 25th ordered value lies within the repeats of 42.7 and the 975th in the repeats of 491.4, giving
the confidence interval [42.7, 491.4].

There is an appreciable difference in the Normal and percentile confidence intervals, so we would tend
to think that perhaps the assumption that the distribution of the statistic had reached Normality might
be incorrect and prefer the percentile interval.

Q5

The power company believe that the component x, which contributes to power generation,
can be directly modelled as Exponential, with parameter λ depending on conditions near
the turbine:

Exponential pdf: f(x | λ) = λe−λx, x ∈ [0, ∞), λ > 0
In other words, with the Exponential distribution as a model for xi, we can simulate it di-
rectly, without simulating (wi, γi).
Making this assumption, list the detailed steps to perform a parametric bootstrap estimate
of the uncertainty in the mean power generation rate (kW) (‘detailed’ means you should
include any derivations of, for example, maximum likelihood estimators or any other quan-
tities needed to do parametric bootstrap)
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Step 1

We require themaximum likelihood estimator (MLE) for the parameter λ in an Exponential distribution,
noting that the data are the univariate perpendicular wind speeds, xi, and not (wi, γi).

ℓ(λ; x) =
n∏

i=1
λe−λxi

=⇒ L(λ; x) =
n∑

i=1
log λ − λxi

= n log λ − λ

n∑
i=1

xi

=⇒ ∂L
∂λ

= n

λ
−

n∑
i=1

xi

∴ n

λ̂
−

n∑
i=1

xi = 0

=⇒ λ̂ = n∑n
i=1 xi

= 1
x̄

Therefore, for the MLE we have that,

x̄ = 4.056 + 1.854 + 0.781 + 1.662
4

= 2.088

=⇒ λ̂ = 0.4789

Step 2

Simulate many data sets of size 4, (x⋆b
1 , x⋆b

2 , x⋆b
3 , x⋆b

4 ), b = 1, . . . , B, with each x⋆
i simulated from an

Exponential(λ = 0.4789).

Each time compute the statistic of interest,

S⋆
b = 1

4

4∑
i=1

V (x⋆b
i )

to obtain another bootstrap estimate of the mean wind power generation rate.

Step 3

Compute S̄⋆ = 1
B

∑B
b=1 S⋆

b and V̂ar(S(·)) in the usual way based on the many bootstrap estimated mean
wind power generation rates.

Q6

Codeup your detailed steps fromQ5 inR anduseB = 10, 000parametric bootstrap replicates
to estimate V̂ar

(
S(·)

)
. You may find the function rexp() useful (see help file). Provide both

the R code as well as the estimate of V̂ar
(
S(·)

)
it produces in your answer (do not list all

10000 simulations!!)

NOTE: Do not worry, the solutions used for marking will allow a range of values in the an-
swer for V̂ar

(
S(·)

)
to allow for variability due to the random simulation.
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library("dplyr")

# Information from the question
# Data:
wind <- data.frame(

w = c(6.9, 6.0, 4.5, 1.9),
gamma = c(-54, 72, 80, 29)

)
# Power curve:
V <- function(x) {

ifelse(x < 1,
0,
ifelse(x < 12,

200*x - 200,
2200))

}

# Compute perpendicular component and power
wind <- wind |>

mutate(x = w*cos(gamma*pi/180),
V = V(x))

wind

w gamma x V
1 6.9 -54 4.0557182 611.1436
2 6.0 72 1.8541020 170.8204
3 4.5 80 0.7814168 0.0000
4 1.9 29 1.6617774 132.3555

# MLE for Exponential model
lambda.hat <- 1/mean(wind$x)
lambda.hat

[1] 0.478869

# Number of bootstraps
B <- 10000

# Statistic of interest
S <- function(x) {

mean(V(x))
}

# Perform bootstrap
S.star <- rep(0, B)
for(b in 1:B) {

x.star <- rexp(4, lambda.hat)
S.star[b] <- S(x.star)

}

# Estimator
S(wind$x)

[1] 228.5799
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# Variance of estimator
var(S.star)

[1] 35483.24

This is a lot higher than the variance produced for the non-parametric bootstrap estimator.

When producing these solutions, I ran the above estimator with B = 10000 many times to account
for the stochastic nature of the estimate. The minimum and maximum on those runs gives a plausible
solution range of [33000, 39000] … any answer for V̂ar

(
S(·)

)
in this range is an acceptable solution.
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