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1. Privacy 1n statistics

The extensive use of private and personally identifi-
able information in modern statistical applications,
especially in biomedical applications, can present se-
rious privacy concerns.

Indeed, industry is on the brink on embarking on
biomedical applications on a scale never before wit-
nessed via the impending wave of so-called 'wear-

able devices' such as smart watches, which can mon-
itor vital health signs round the clock, perhaps fit-
ting classification models to alert on different health
conditions. Such constrained devices will almost cer-
tainly leverage cloud services, uploading reams of
private health diagnostics to corporate servers.

Is there any hope of honouring people's desire for pri-
vacy while still performing statistical analyses?

3. Fan and Vercauteren (2012)

Notation
Zg={n:ncZ —q/2<n<q/2}
al, € Z, st |al, = a mod g
x|, Z,|x| polynomials with coeff € Z and € Z,

/.

O, (x) n™ cyclotomic poly, ou(z) = 22° + 1
R = Z|z]/®oa(x) and R, = Z,|x]/ Poa(x)

a(z) = a € R, polynomial ring elements

lal, = centred reduction of coeff in Z,

- ~ x random poly with discrete Gaussian coeff

+ ~ R, random poly uniformly from R,

Parameters

e d, degree of polynomial rings M and C;
 t,q, magnitude of coefficient sets of M, C’;
e 0, magnitude of injected noise.

Encryption scheme

M:Rt,C:RqXRq

Keys: k, ~ Ry and ky = ([—(a-k, + ¢)q, a)
wherea ~ R, and e ~ ¥.

Encrypt: first mapm € Z — m(x) € R;

d—1
m=>" a,2" = m(z)=3"_, " anz" € R,

n=>0
C .— ([E 1 Q—|‘§1 + A'ﬁl]qv [k 2°Q—|—Q2]Q)

p — —Pp
q

where u,e;,e, ~ yand A = Lﬂ

Add/mult: ¢; + ¢o = ([¢y + Co1la, [C1o + Conl)

C1 XCo = ({Lt(9114921)—‘} , H‘t(911°922:912'921)_u
q q
{{“912'922)_‘} )
1 q

Decrypt C: I = [V[Ql"@; 'Es]q—H
t
Then m = m(2).

4. High performance R package

HomomorphicEncryptionR package (Aslett, 2014)
provides easy to use interface which hides all the
complexity of homomorphic encryption.

Implementation is mostly high performance C++,
with many operations setup to utilise multi-core par-
allelism without any end-user intervention.

Native support for vectors/matrices and all operators
and common functions overloaded to run encrypted.

p <- parsHelp("FandV", lambda=80, L=8)
k <- keygen(p)

c <- enc(k$pk, matrix(1:9, nrow=3))
cres <- c[,1] %*% c

dec(k$sk, cres)
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2. Homomorphic encryption : the blindfold

Traditional encryption schemes (AES, SSL, ...) se-
cure data for archive or communication using a key
k or keypair (k,, ks). Encrypt a message, m € M, to
a ciphertext, c € C', with public key:

c < Enc(k,, m)
Decrypt with secret key:
m = Dec(ks, ¢)

But if we want to compute, have to decrypt first be-
cause they are 'brittle':

Dec(ks, f(c)) # f(m) V f(-)F#1d(-)

Homomorphic encryption

Rivest et al. (1978) hypothesised 4 schemes allowing
blindfold computation. Not until Gentry (2009) was
it shown to be possible for arbitrary numbers of addi-
tions & multiplications. Homomorphic if:

Dec(ks, Enc(k,, m1) © Enc(k,, ma)) = mq o mo

for a set of operations o € Fj; acting in M that have
corresponding operations ¢ € F acting in C'. "Fully

5. Completely Random Forests (CRF)

Data representation
Create purely binary representation of categori-
cal/continuous variables (e.g. quintile binning).
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Note: now have partition of variable j, /C; st:

Z Tiik Tijk = 1 <= Xi; = 2y,
kEKj
with equality in binned/partition sense.

CRF algorithm

Foreacht € {1,...,T}, build a tree in forest:

i) Tree growth: For each [ € {1,...,L}, build

a level. Level [ has 2'~! branches. For b ¢

{1,...,2!71} construct partitions:

o Splitting variable: Select variable p;;, at random
from P predictors. Due to the representation, this
variable has a partition /C,,, , .

e Split point: Create partition of Cp,,, ,

o = (K1 K§°} where K" = Jk; for
some k; € K, ., with KI'* N Ki'* = & and

K{lb U Kélb — K

o Dtib*

6. Results

Other new crypto methods (see tech report soon)
e One-step logistic regression (LR-onestep)
e Semi-parametric naive Bayes with linear logis-
tic decision boundaries (SNB)
Tested on 20 different data sets from UCI repository.

homomorphic" = F; = {+, x}.

Fully homomorphic exciting if M = 7Z /27 because
+ = Yand X = A, so can reproduce arbitrary
boolean logic (arbitrary computation).

Nirvana? Perhaps pergatory . ..
Flurry of excitement, followed by dose of reality.
e (Jusually complex (e.g. polynomial ring)
— very slow computation
- size of ¢ > size of m
e . M = 7/27 impractical, but
- M = R impossible
- M = 7Z/nZ for large n best
e ... butifintegers not boolean circuits we'd like
— division
— comparisons (<, <, >, >, =)
which are not possible!
Quick reality check: can just evaluate polynomials of
integers (in practise of limited degree).
The challenge: fit meaningful statistical models

within these constraints.

ii) Tree fitting: Total # training obs from category c

in randomly grown tree ¢ at leaf b € {1,...,2%} is:
N L
pgc — ZgZCH Z jiaptlg(b,l)ak
where
S
g(b7 l) - = oL+1—1
- | (b—1) mod 2-+
h(b,l) := ST +1

iii) Prediction: Given encrypted test obs f;k, then:

2 : ~ %
xptlg(b,l)yk

tlg(b,l)
kEKh(b,l)

T 2oF L

ge=> > rell

t=1 b=1 [=1

is # of votes for response category c.

Further points too big to fit on poster . ..

e Imbalanced designs

e Natural variance reduction

* Encrypted unbiased stochastic fraction estimate
e Incremental/parallel computation

Performance practicalities?

Full bcw_o data set, 100 tree CRF with 3 levels deep
fitted on Amazon EC2 cluster of 1152 CPU cores in 1

hour 36 minutes fully encrypted.
Total cost: less than US$ 24.

LR—indép :
: LR-onestep :

chchch

AUC for 100 randomisations of the train/test sets.
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Ratio of encrypted method to traditional method AUC
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