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Abstract

Recent advances in cryptography promise to enable secure statistical computa-
tion on encrypted data, whereby a limited set of operations can be carried out with-
out the need to first decrypt. We review these homomorphic encryption schemes

in a manner accessible to statisticians and machine learners, focusing on pertinent
limitations inherent in the current state of the art. These limitations restrict the
kind of statistics and machine learning algorithms which can be implemented and
we review those which have been successfully applied in the literature. Finally,
we document a high performance R package implementing a recent homomorphic
scheme in a general framework.

Keywords: homomorphic encryption; data privacy; encrypted statistical analysis;
homomorphic encryption R package.

1 Introduction

The extensive use of private and personally identifiable information in modern statistical
(and machine learning) applications can present an obstacle to individuals contributing
their data to research. As just one example, when considering contribution to biobanks
Kaufman et al. (2009) reported 90% of respondents had privacy concerns. Addressing
these concerns is paramount if the participation rate in biomedical and genetic research
is to be increased, especially for government and industry where public trust is lower
(Kaufman et al., 2009). Indeed, industry is on the brink on embarking on biomedical
applications on a scale never before witnessed via the impending wave of so-called ‘wear-
able devices’ such as smart watches, which present serious privacy concerns. Companies
hope to market the ability to monitor and track vital health signs round the clock, per-
haps fitting classification models to alert different health concerns of interest. However,
such constrained devices will almost certainly leverage ‘cloud’ services, uploading reams
of private health diagnostics to corporate servers. Herein, it is demonstrated how recent
advances in cryptography allow individual privacy to be preserved, whilst still enabling
researchers and industry to incorporate such data into statistical analyses.

Moreover, the current explosion in cloud computing platforms promise to enable re-
searchers and businesses to divest themselves of complex in-house compute server setups,
but require one to vest all trust in the cloud provider maintaining confidentiality of the
data.

One way to ensure trust in the scenarios above is through storage and disclosure of
only secure, encrypted data. Encryption is a technique whereby data, termed a message
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in cryptography, is mathematically transformed using an encryption key to produce a
cipher text. The cipher text can only easily be decrypted to reveal the original data if the
corresponding decryption key is known. Therefore, a cipher text can be stored openly
without compromising privacy so long as the decryption key is kept secret.

From a data science perspective, the problem with employing cryptographic methods
to improve trust is that the data must at some point be decrypted for use in a statistical
analysis. However, recent cryptography research in the areas of homomorphic and func-
tional encryption are showing exciting potential to bypass this. An encryption scheme is
said to be homomorphic if certain mathematical operations can be applied directly to the
cipher text in such a way that decrypting the result renders the same answer as applying
the function to the original unencrypted data.

The remarkable properties of homomorphic encryption schemes are not without lim-
itations, which typically include slow evaluation and the fact that the set of functions
which can be computed in cipher text space is very restricted. However, by understand-
ing the constraints and restrictions it is hoped that statistics researchers can assist in the
research effort, adapting statistical techniques to be amenable to homomorphic compu-
tation by making and quantifying reasonable approximations in those situations where a
traditional approach cannot be implemented homomorphically.

There are reviews and introductions to homomorphic encryption aimed at different
audiences and each with a different emphasis (Gentry, 2010; Vaikuntanathan, 2011; Sen,
2013; Silverberg, 2013). The aim of this paper is to provide statisticians and machine
learners with sufficient background to become involved in developing methodology specif-
ically crafted to homomorphic computation. As part of this effort we describe an accom-
panying high performance R package providing an easy to use reference implementation as
a core contribution of this work. In a sister publication (Aslett, Esperança and Holmes,
2015) we present some novel statistical machine learning techniques developed to be
amenable to fitting and prediction encrypted.

In Section 2 homomorphic encryption is introduced covering the salient features for
statistical work without drifting too far into cryptography theory unnecessarily, although
full references and resources are provided for further reading. Section 3 reviews the statis-
tical techniques which have been successfully implemented in the cryptography literature
and existing software implementations of homomorphic schemes. Section 4 describes a
high-level easy to use software implementation available as an R package (Aslett, 2014).

2 Homomorphic encryption

This section presents an introduction to homomorphic encryption with an emphasis on
details and limitations which are pertinent to applying statistics and machine learning
methodology.

2.1 Background on encryption

An unencrypted number, m ∈M , is referred to as a message, while the encrypted version,
c ∈ C, is the cipher text, where M and C are the message space and cipher text space
respectively. Typically M ⊂ Z, the integers or similar, whilst C will depend on the
encryption algorithm being used. A given encryption scheme then utilises keys in order
to map the message into a cipher text and to recover the message from a cipher text.
There are two approaches: either there is a single secret key, or there are a public and
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secret key. In the single secret key scheme the same key is used to map messages to
cipher texts and vice versa, so this key must be kept private at all times. Conversely, a
scheme which also has a public key uses that key to map messages to cipher texts, but
uses the secret key to map back: consequently the public key can be openly disclosed.
Hereinafter, only public key schemes are considered.

Fundamentally encryption can be treated as simply a mapping which takes m and a
public key, kp, and produces the cipher text, c← Enc(kp, m). Notationally, ← is used to
signify assignment rather than equality, since encryption is not necessarily a function in
the mathematical sense: any fixed inputs kp and m will produce many different cipher
texts. Indeed, this is a desirable property for public key encryption schemes, referred to
as semantic security : a scheme is semantically secure if knowledge of c for some m has
vanishingly small probability of revealing further information about any other encrypted
message. Informally, this means repeated encryption of the same message m will render
different and seemingly unrelated cipher texts each time with high probability. Clearly,
if encryption was an injective function for fixed kp, Enc : M → C, then any public key
encryption scheme with a modestly sized message space could be trivially compromised.
Semantic security is achieved by introducing randomness into the cipher text which is
sufficiently small not to interfere with correct decryption when in possession of ks, but,
as will become apparent in the sequel, this essential feature imposes a handicap on all
currently known homomorphic schemes.

Conversely, decryption is a function which renders the original message, m = Dec(ks, c).
The crucial relation satisfied by any encryption scheme is therefore:

m = Dec(ks, Enc(kp, m)) ∀ m ∈M

Consequently, the security of an encryption scheme is based on the hardness of recov-
ering m given knowledge of only c and kp. Some schemes are based on empirical hardness
assumptions about particular problems, whilst others may rely on settings where the
hardness can be rigorously proven.

This is a simplification of general cryptographic schemes, since some of the most im-
portant algorithms, such as the current industry standard Advanced Encryption Standard
(AES) (Daemen and Rijmen, 2002), do not normally operate value-by-value but rather
on blocks of binary data. However, it encompasses the class of algorithms to be discussed
in what follows.

2.2 Homomorphic encryption

The term homomorphic encryption describes a class of encryption algorithms which sat-
isfy the homomorphic property: that is certain operations, such as addition, can be
carried out on cipher texts directly so that upon decryption the same answer is obtained
as operating on the original messages. In simple terms, were one to encrypt the numbers
2 and 3 separately and ‘add’ the cipher texts, then decryption of the result would yield 5.
This is a special property not enjoyed by standard encryption schemes where decrypting
the sum of two cipher texts would generally render nonsense.

More precisely, an encryption scheme is said to be homomorphic for some operations
◦ ∈ FM acting in message space (such as addition) if there are corresponding operations
⋄ ∈ FC acting in cipher text space satisfying the property:

Dec(ks, Enc(kp, m1) ⋄ Enc(kp, m2)) = m1 ◦m2
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For example, the simple scheme in Gentry (2010) describes a method where FM =
{+,×} and FC = {+,×}, though there is no restriction that the operations must corre-
spond in all schemes. For example, Paillier encryption (Paillier, 1999) is homomorphic
only for addition, with FM = {+} but where FC = {×}.

Note this is not a group homomorphism in the mathematical sense, since the property
does not commute when starting instead from cipher texts, due to semantic security. That
is, because the same message encrypts to different cipher texts with high probability, in
general:

Enc(kp, m1) ⋄ Enc(kp, m2) 6= Enc(kp, m1 ◦m2)

Moreover, generally m1 > m2 ; Enc(kp, m1) > Enc(kp, m2). Another consequence of
semantic security is that operations performed on the cipher text may increase the noise
level, so that only a limited number of operations can be consecutively performed before
the noise must be reduced.

The possibility of homomorphic encryption was proposed by Rivest, Adleman and
Dertouzos (1978) and many schemes that supported either multiplication (such as RSA
(Rivest, Shamir and Adleman, 1978), ElGamal (ElGamal, 1985), etc) or addition (such
as Goldwasser-Micali (Goldwasser and Micali, 1982), Paillier (Paillier, 1999), etc) were
found. However, in many of these the number of times one could add or multiply was
limited and a scheme supporting both operations simultaneously was elusive (Boneh et al.
(2005) came closest, allowing unlimited additions and a single multiplication). It was not
until 2009 that the three decade old problem was solved in seminal work by Gentry (2009),
where he showed addition, multiplication and control of the noise growth were all possible.
This sparked a cascade of work on fully homomorphic schemes: that is, those where a
theoretically unlimited number of addition and multiplication operations are possible.
This modern era of homomorphic encryption is briefly summarised in Appendix A.

The advent of a scheme capable of evaluating both addition and multiplication a
(theoretically) arbitrary number of times led to a surge of optimism, since then any
polynomial can be computed and so the output of any suitably smooth function could
in principal be arbitrarily closely approximated. Moreover, if M = {0, 1} then addition
corresponds to logical XOR, and multiplication corresponds to logical AND, which is
sufficient to construct arbitrary binary circuits so that, in principle, anything which
can be evaluated by a computer can be represented by an algorithm which will run on
homomorphically encrypted data. However, caution is needed here regarding practicality:
performing just a 32-bit integer addition using a simple ripple-carry adder design involves
32 full adders, each requiring 3 XORs, 2 ANDs and an OR (≡ 2 XOR & 1 AND) —
256 fundamental operations just to add two integers, an avenue it will become clear is
impractical with current homomorphic schemes.

A slightly whimsical but highly lucid and more detailed introduction to homomorphic
encryption can be found in Gentry (2010). A longer introduction and background is in
Sen (2013).

2.3 The scheme of Fan and Vercauteren (2012)

To make these ideas more concrete the particular scheme of Fan and Vercauteren (2012)
(hereinafter FandV) will now be described. A high performance, easy to use implementa-
tion of the same is a contribution of this technical report as discussed in Section 4.

FandV is a fully homomorphic scheme where the message space accommodates repre-
sentation of large subsets of Z (not just binary messages), and a cipher text is a pair of
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large polynomials. Its security is based on the hardness of the ring Learning With Errors
(LWE) problem (Lyubashevsky et al., 2010) which is connected to classical cryptography
hardness results (such theory would be a diversion: for a short description see Appendix
B).

To simplify the presentation for a statistics audience, some minor simplifying restric-
tions are made to the original scheme as will be explained. The reader may safely skip to
Section 2.4 if the following mathematical details of this example encryption scheme are
not of interest.

2.3.1 Notation

Zq is the set of integers {n : n ∈ Z,−q/2 < n ≤ q/2} and [a]q denotes the unique integer
in Zq which is equal to a mod q. Z[x] and Zq[x] denote polynomials whose coefficients
belong to Z and Zq respectively. Then, for a fixed value d, the primary objects of in-
terest in the scheme are the polynomial rings R = Z[x]/Φ2d(x) and Rq = Zq[x]/Φ2d(x),

where Φ2d(x) = x2d−1

+ 1 is the 2d-th cyclotomic polynomial1. The restriction to 2d-th
cyclotomic polynomials here is for the convenience of their form, the computational effi-
ciencies of reducing a polynomial modulo this form, and for the simplicity of generating
random polynomials modulo this form which satisfy ring LWE hardness results (although
theoretically FandV can be modulo any monic irreducible polynomial).

To distinguish polynomials, they will be underscored a ∈ Rq if not written in func-
tional form, a(x). Polynomial multiplication will be emphasised, a · b and all such multi-
plication takes place within the ring R. [a]q indicates the centred reduction above applied
to each coefficient of a individually, so that a ∈ R =⇒ [a]q ∈ Rq.

The randomness to be introduced for semantic security comes via the bounded dis-
crete Gaussian distribution, defined to be the probability mass function proportional to
exp(−x2/(2σ2)) over the integers from −B to B, where typically B ≈ 10σ. For the special
choice of polynomial modulo Φ2d(x) above, the corresponding multivariate distribution
denoted χ on R then involves simply generating each coefficient of xn, 0 ≤ n ≤ 2d−1 − 1,
from a bounded discrete Gaussian distribution. This simple sampling procedure arises
due to the modulo Φ2d(x), which ensures that the coefficients are all independent af-
ter modular reduction. Reducing modulo an arbitrary monic irreducible polynomial can
introduce dependencies between coefficients which ceases to satisfy the assumptions un-
derlying the hardness results of ring-LWE (Lyubashevsky et al., 2010), leading to more
complex sampling procedures.

If a is a uniform random draw from Rq this is denoted a ∼ Rq, or correspondingly if
a is a draw from the multivariate bounded discrete Gaussian draw induced on R, χ, this
is denoted a ∼ χ.

2.3.2 The encryption scheme

The message space of this scheme is the polynomial ring M = Rt. Thus any integer
message m must be converted to a polynomial representation m̊(x). In principle, if m is
small enough that m ∈ Zt, then the degree zero polynomial m̊(x) = m ∈ Rt is sufficient.

1In simple terms, Φd(x), the d-th cyclotomic polynomial is the polynomial which: divides xd−1; does
not divide xn − 1 for any n < d; has integer coefficients; and cannot be factorised.
For example, Φ3(x) = x2 + x + 1 because (x2 + x + 1)(x − 1) = x3 − 1, but it does not divide x2 − 1

or x− 1, it has integer coefficients and it cannot be factorised.
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However, there are reasons which will become apparent that this is undesirable even when
m is small enough (or t is large enough).

A better approach is to take an integer to be encrypted, write it in standard b-bit bi-

nary representation, m =
∑b−1

n=0
an2

n, and then simply construct m̊(x) =
∑

2d−1
−1

n=0
anx

n ∈
Rt where an = 0 ∀ n ≥ b. Recovery of the original message after decryption is then
simply evaluation of m̊(2) = m, because homomorphic addition and multiplication oper-
ations will correspond to operations on the polynomials preserving the end result. This
representation is assumed here and is used automatically in the software contribution of
Section 4.

The cipher text space is the Cartesian product of two polynomial rings C = Rq ×Rq,
where q ≫ t. As will be seen, the message polynomial is essentially embedded in the
log2(t) most significant bits of the first polynomial in C, with the random noise growing
from the least significant bits. Once the noise grows under repeated operations and
reaches the log2(t) most significant bits the message is lost.

The parameters of the scheme are: d, determining the degree of both the polynomial
rings M and C; t and q, determining the coefficient sets of the polynomial rings M and
C; and σ, determining the magnitude of the randomness used for semantic security.

An example of values which ensure good security would be d = 13 ( =⇒ 4095 degree
polynomials), q = 2128, t = 215, σ = 16 (Fan and Vercauteren, 2012). The software
contribution of Section 4 provides functions to help select these parameters automatically
based on lower bounds of security and computability they provide.

Key Generation: The secret key, ks, is simply a uniform random draw from R2 (i.e.
sample a 2d−1 binary vector for the polynomial coefficients).

The public key, ~kp, is a vector containing two polynomials:

~kp = (kp1, kp2) := ([−(a · ks + e)]q, a) ∈ Rq × Rq

where a ∼ Rq and e ∼ χ. Note ks is hard to extract from ~kp precisely due to ring LWE
hardness results (see Appendix B).

Encryption, Enc(~kp, m): An integer message m is first represented as m̊ ∈ Rt as de-
scribed above. Encryption then renders a cipher text which is a vector containing two
polynomials:

~c = (c1, c2) := ([kp1 · u+ e1 +∆ · m̊]q, [kp2 · u+ e2]q) ∈ Rq × Rq

where u, e1, e2 ∼ χ and ∆ =
⌊

q

t

⌉

.

Decryption, Dec(ks,~c): Decryption of a cipher text c is by evaluating:

m̊ =

[⌊

t[c1 + c2 · ks]q
q

⌉]

t

∈ Rt

so that m = m̊(2).

Addition, +: Addition in message space is achieved in cipher text space by standard
vector and polynomial addition with modulo reduction:

~c1 + ~c2 = ([c11 + c21]q, [c12 + c22]q)

It is an easy and enlightening exercise to verify by hand that Dec(ks,~c1 + ~c2) renders m̊.
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Multiplication, ×: Multiplication in message space produces a more complex operation
in cipher text space which increases the length of the cipher text vector:

~c1 × ~c2 =

(

[⌊

t(c11 · c21)

q

⌉]

q

,

[⌊

t(c11 · c22 + c12 · c21)

q

⌉]

q

,

[⌊

t(c12 · c22)

q

⌉]

q

)

Although it is still possible to recover m̊ from one of these larger cipher texts by mod-

ifying the decryption function to be
[⌊

t
q
[c1 + c2 · ks + c3 · ks · ks]q

⌉]

t
, it is preferable to

perform a ‘relinearisation’ procedure which compacts the cipher text to a vector of two
polynomials again and reverts to the original decryption procedure. Thus in practice mul-
tiplication is a two step procedure: cipher text multiplication followed by relinearisation.
Description of relinearisation is beyond the scope of this review, but full details are in
Fan and Vercauteren (2012) and it is seamlessly implemented in the software contribution
described in Section 4.

2.3.3 A practical note

Above, a binary polynomial representation of integers was proposed as being preferable
to a scalar (zero degree polynomial) representation (i.e. a natural number), even when
the message is small enough that m ∈ Zt, the reason for which should now be clearer.

Consider the addition operation with the example parameters given above, recall that
each coefficient of m̊(x) must lie in the range −16, 383 to 16, 384 after computation in
order to decrypt correctly, and note that the addition operation results in direct addition
of coefficients in the polynomial representations. Now, bearing these points in mind, if
m̊(x) = m then addition will only render the correct answer so long as the overall final
result also remains in the range−16, 383 to 16, 384. However, with a binary representation
the largest coefficient of any term in m̊(x) will be ±1, so that at least 16, 384 additions
(possibly more) can be performed and still guaranteed to decrypt correctly, furthermore
allowing the final result, m̊(2), to be much larger than ±16, 384. Not only is this more
additions, but more importantly the binary representation allows a general hard bound
for how many additions can be performed while still guaranteeing the correct value is
decrypted, without knowledge of the messages.

2.4 Some limitations

At this juncture it is important to temper any building excitement. Although Gentry
(2009) theoretically provided an exemplar for how fully homomorphic schemes could
be constructed, the extraordinary theoretical possibilities are constrained by practical
limitations. These crucial limitations mean that it is not simply a matter of taking any
algorithm and converting it to run on encrypted data, so that many statistical algorithms
are in fact beyond the computational reach of existing homomorphic schemes.

The limitations discussed now are in general common to all current homomorphic
schemes to a varying degree, though specific homomorphic encryption algorithms may
have their own additional constraints. In each case, the limitation will be highlighted in
the context of the scheme described in Section 2.3.
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2.4.1 Message space

There are currently no schemes which will directly encrypt arbitrary values in R. In-
deed, the most common message space is simply binary, M = {0, 1}, with this being of
particular appeal to theoretical cryptographers because it corresponds to construction of
arbitrary Boolean circuits and allows all the results in computational complexity theory
to be applied to determine computability. However, from a practical standpoint this is
not presently a very feasible avenue.

However, there are schemes which have an expanded message space, such as M =
Z/nZ, or M = {−n,−n + 1, . . . , n − 1, n} for some integer n. These schemes generally
correspond to integer rings or fields (for prime n) where ordinary rules of arithmetic can
be assumed when results are bounded by n. In many schemes which support expanded
message spaces, increasing n will impact the capabilities of the scheme (decreasing secu-
rity, computation speed, computational depth or all these).

A method which can be used to increase the size of the message space is via the
Chinese Remainder Theorem as a means of representing a large integer.
Chinese Remainder Theorem (Knuth, 1997, p.270) Let m1, . . . , mk ∈ Z

+ be pairwise
coprime positive integers. Let M =

∏k

i=1
mi and let a, x1, . . . , xk ∈ Z. Then there is

exactly one integer x that satisfies the conditions:

a ≤ x < a+m and x ≡ xi mod mi ∀ 1 ≤ i ≤ k

Thus, an integer message x ∈ [a, a+m) can be uniquely represented by the collection
of smaller integers {xi}

k
i=1, called the residues. More formally, Z/M ∼= Z/m1×· · ·×Z/mk.

So, if each mi is chosen small enough that the scheme can encrypt it, then much larger
message spaces can be achieved by encrypting the collection of residues. The process
is reversible so that the value x can be recovered given {xi}

k
i=1 (Knuth, 1997, p.274).

Such a representation is called a residue number system (Garner, 1959) and has the
additional advantage that addition and multiplication operations (the only ones which
can be performed homomorphically anyway) are embarrassingly parallel: performing the
same operation according to the modular arithmetic of each residue will result in a residue
representation of the corresponding result of operating on the large integers.

Related and more common in the homomorphic encryption literature, is the reverse
usage of the polynomial version of the Chinese Remainder Theorem, which enables com-
bining multiple messages into a single polynomial representation (that is, m̊ now holds
multiple plain text messages before encryption), so that operations on the single cipher
text performs simultaneous operations on all the messages simultaneously in a manner
akin to Single Instruction Multiple Data (SIMD) instructions on a CPU (Smart and
Vercauteren, 2014). This of course reduces rather than increases the possible range of
individual messages which can be encrypted.

Even if using the Chinese remainder theorem to represent larger values, the issue
remains of how to handle statistical data, which is commonly not binary or integer. There
are at least two approaches: the first is common throughout the literature, whereby any
real value is approximated by some rational number, with numerator and denominator
encrypted separately and propagated through using the usual rules of arithmetic for
fractions. The second is a logarithmic representation developed by Franz et al. (2010), in
which division is possible but where addition and subtraction become substantially more
complex to implement.

The FandV scheme has an unusual message space, being a polynomial ring. For the
example parameter values given above, this means that when using the binary represen-
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tation of integer values, the integers can in principle be very large (over ±101237). As
such, the limitation in message space size may seem less acute than in other homomorphic
schemes (especially binary ones), but the practical issue raised in §2.3.3 means that it
may still be advantageous to use a residue number system representation if there will be
a lot of addition.

In the follow on to this review (Aslett, Esperança and Holmes, 2015), two other ap-
proaches are proposed: one where data is effectively quantile binned in a binary indicator
fashion, which is shown to effectively enable simple comparison operations; and another
discretisation of real values which is appropriate for linear modelling.

2.4.2 Cipher text size

Once the value to be encrypted has been appropriately represented such that only ele-
ments of M need to be encrypted, there is the additional issue of a substantial inflation
in the size of the message after encryption, often by several orders of magnitude.

As a concrete example, the usual representation of an integer in a computer requires
4 bytes of memory. If such a message is encrypted under the scheme presented in Section
2.3, then using the example parameters will result in cipher texts occupying 65, 536 bytes
(4096 coefficients, each a 128-bit integer). Consequently, a 1MB data set will occupy
nearly 16.4GB encrypted.

One mitigating proposal (Naehrig et al., 2011) is to initially encrypt values using a
non-homomorphic, size efficient encryption algorithm such as AES, and to encrypt the
AES decryption key with a homomorphic scheme. The decryption circuit for AES can
then be executed homomorphically, rendering a homomorphic encryption of the original
message. This would mean that communication and long term storage of encrypted values
could be space efficient, with expanded homomorphic cipher texts generated by effectively
‘recrypting’ from this compact format when computation is required. AES is an industry
standard, but required 36 hours to execute homomorphically (Gentry et al., 2012) (for
56 AES blocks, corresponding to 896 bytes of data), although a more recent lightweight
cipher named SIMON can be recrypted homomorphically in around 12 minutes (Lepoint
and Naehrig, 2014). However, these approaches operated on binary messages, so the
resulting recryption is to a binary scheme with the attendant issues already discussed.

2.4.3 Computational cost

Elements of cipher text space are not only larger in memory (with an associated addi-
tional computational cost to process), but will typically also be more complex spaces.
For example, in Section 2.3 the cipher text space is the ring of polynomials modulo a
cyclotomic polynomial, with coefficients from a large integer ring (e.g. 128-bit integers).
Consequently, arithmetic operations are substantially more costly than standard arith-
metic: there is large polynomial arithmetic involving coefficients which are too large to fit
in standard 32-bit or 64-bit integers, with the additional overhead of modulo operations
on both the coefficients and polynomial.

Most current schemes can achieve reasonable speeds for additions, but are very con-
strained in speed of multiplications. The optimised scheme implemented in the R package
HomomorphicEncryption (Aslett, 2014) achieves thousands of additions per second, and
about 50 multiplications per second. This is mitigated as far as possible by transparently
implementing full CPU parallelism.
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If all the operations involved can be performed in a single instruction multiple data
(SIMD) fashion then the polynomial Chinese remainder theorem alluded to above can be
used when representing the messages as a polynomial prior to encryption. In this way a
single cipher text operation actually operates in a SIMD manner on many messages for
the same computational cost (Smart and Vercauteren, 2014). Naturally, there is a limit
to how many messages can be packed into a single cipher text in this way.

2.4.4 Division and comparison operators

At present there are no homomorphic schemes capable of natively supporting division
operations, only addition and multiplication. An additional serious constraint is the in-
ability to have any conditional code flow: comparison operators such as tests of equality
and inequality cannot be performed on the encrypted data. Consequently, many algo-
rithms appear out of reach without substantial redevelopment.

2.4.5 Depth of operations

The final limitation relates to the number of operations which can be applied. As ex-
plained in the discussion on semantic security, there is randomness injected into the
cipher text in these encryption schemes. When operations are performed, the noise tends
to accumulate (exactly how being scheme dependent): for example, in many schemes
multiplication operations result in direct multiplication of the noise components leading
in the näıve case to potentially exponential increases in the magnitude of the noise over
many operations. Once the noise exceeds a certain threshold then decryption will render
the incorrect message.

It is important to be clear that it is not usually the total number of multiplica-
tions which is limited, but rather the depth (i.e. the maximum degree of the eval-
uated polynomial). For example, x1 × x2 × x3 has multiplicative depth 2, whereas
x1 × x2 + x3 × x4 + · · ·+ xn−1 × xn has multiplicative depth 1 ∀n. Exactly what depth
a scheme can achieve will depend on the scheme itself and usually on the parameters
chosen, which commonly involves a tradeoff of speed, security or memory requirements
against depth of operations.

In principle, one of the breakthrough aspects of Gentry’s (2009) work was the ability
to bootstrap (entirely unrelated to the statistics term) a cipher text: an operation which
resets the noise to that of a freshly encrypted message. However, most bootstrapping
routines are very complex to implement, extremely slow to execute, or both. As a result,
it is almost universal in the applied cryptography literature to set the parameters of the
scheme under consideration to be such that the necessary depth of operations can be
performed without a bootstrapping step being required. The software contribution of
Section 4 provide functions to help automatically select the parameters based on lower
bounds in the literature for the depth of multiplications required.

2.4.6 Motivation

To date the small number of applied cryptography papers have largely taken existing
statistical techniques which can be made to directly fit within these constraints and
demonstrated any minor refactoring of the algorithms that is necessary, but leave them
fundamentally unaltered (some examples are reviewed in Section 3). However, statis-
ticians and machine learners are well placed to develop principled approximations to
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current statistical and machine learning techniques, or entirely new techniques, where
the constraints of homomorphic encryption are considered at all stages of model and
algorithm development, and where uncertainties and errors introduced can be studied.
Some initial contributions in this direction are presented in Aslett, Esperança and Holmes
(2015).

2.5 Usage scenarios

The most obvious usage scenario is to outsource long-term storage and computation
of sensitive data to a third party cloud provider. Here the ‘client’ (the owner of the
data) encrypts everything prior to uploading to the ‘server’ (at the cloud provider’s data
centre). Due to some of the limitations discussed above, this scenario is perhaps currently
only suitable in a restricted set of situations where the added computational costs and
inflated data size are not prohibitive. With homomorphic schemes improving all the time
the boundary where this is a practical usage scenario will shift over time.

However, with the explosion of extremely compute, memory and battery constrained
devices such as smart watches and glasses it may be that scenarios where additional server
side memory and compute costs are a worthwhile trade-off are substantially broader. This
is especially true given the biomedical focus of many of these recent devices which collect
a lot of sensitive health data: collection of this on constrained client devices and handoff
to a cryptographically secure server storage area which is capable of encrypted statistical
analysis is an attractive proposition for both users and manufacturers.

An additional scenario is one in which it is desirable to be able to perform statistical
analyses without the data being visible to anyone at all. To be concrete, consider a
research institute requiring patient data for analysis: the research institute could widely
distribute their public key to enable patients to securely donate their sensitive personal
data. This data would be encrypted and sent directly to the cloud provider who would
have a contractual obligation to only allow the research institute access to the results
of pre-approved functions run on that data, not to the raw encrypted data itself. Peer
review would be important for pre-approving certain functions to be homomorphically
executed to ensure that the original data is not indirectly leaked. An interesting effect
here may be increased statistical power (despite homomorphic approximations) due to
the greater sample sizes which could result from increased participation because of the
privacy guarantees.

There is at least one further usage scenario: that is, where there is confidential data on
which a confidential algorithm must be run. In this situation, a client may encrypt their
data to give to the developer of the algorithm and receive the results of the algorithm
without either party compromising data or algorithm. In this situation, the constraints of
homomorphic encryption are merely an opportunity cost because there may be no other
way to achieve the same goal.

3 Current Methods

There are two aspects which, from the perspective of a statistician, are important to
review: prior work on encrypted statistics algorithms and existing software implementa-
tions for making use of homomorphic encryption schemes.

In this section, both aspects are surveyed before the software tools documented in
this paper are covered in Section 4.
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3.1 Encrypted statistics

In the recent years, some work has emerged on statistical methods for homomorphically
encrypted data.

Graepel et al. (2012) proposed algorithms for binary classification, namely secure
versions of the Linear Means and Fisher’s Linear Discriminant classifiers. The algorithms
are rewritten in such a way that divisions are avoided but the original score function
(needed for classification) is computable up to a constant. Because some operations have
no counterpart in the encryption framework (like division and comparison), some of the
computation is done offline by the client after decrypting results returned by the cloud.
For instance, in binary classification y ∈ {−1, 1} with Linear Means, the class label
is computed in this way as the sign of a score function. To represent real numbers as
integers, the authors propose a rescaling approach which approximates real numbers with
rational numbers (integer numerator and denominator) and then clears denominators by
multiplying all numbers by an appropriate factor and rounding the result to the nearest
integer. Approximation accuracy can be controlled in this way.

Wu and Haven (2012) extended previous work on encrypted statistics (Lauter et al.,
2011), namely the computation of mean and covariance in a multivariate scenario, us-
ing the same technique of returning separate encrypted numerators and denominators.
Additionally, they also mention the possibility of implementing (and indeed implement)
low-dimension linear regression (d ≤ 5) by using Cramer’s rule to invert the matrix
XTX which is required to obtain the ordinary least squares estimates of the regression
parameters β̂ = (XTX)−1XTY . Because Cramer’s rule also involves a division by the
determinant of XTX , the computation can not be completely performed homomorphi-
cally and must be finished offline by the client who assembles the division factors post-
decryption. Apart from the computational issues caused by division, there are additional
problems here, the most important being the complexity of Cramer’s rule: for a problem
with dimension d, the computation of the determinant has multiplicative depth d − 1
and requires O(d!) multiplications. Allied to this comes the computation of the adjoint
matrix, having similarly substantial computational complexity. The restriction is two-
fold: firstly, in the multiplicative depth of operations; and secondly, in the computational
costs of these operations. Whereas the second restriction implies possible intractability
of high-dimensional linear regression, the first restriction affects correctness of decryption
and so should be regarded as more serious.

Lauter et al. (2014) observed that it is possible to analyse genomic data in a privacy-
preserving framework and provide some examples of algorithms in statistical genetics
which are implementable under the restrictions of homomorphic encryption, including the
Cochran–Armitage trend test, the expectation–maximisation algorithm and measures of
goodness-of-fit and linkage disequilibrium. The main issue in implementing these meth-
ods under the homomorphic encryption framework is that divisions are not possible. The
solution proposed is to write the statistics in terms of the two factors involved in a di-
vision (dividend/numerator and divisor/denominator), compute these homomorphically
and send them back to the client, who decrypts each factor and performs the division of-
fline. For complex problems where divisions can not be grouped (by combining dividends
and divisors), there will be a higher number of cipher texts being passed to the client,
which increases communication costs and, more importantly, may compromise privacy
since more information is contained in less processed cipher texts.

Another class of privacy-preserving statistical methods has been proposed for predic-
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tive purposes: an algorithm is trained offline (say, a regression model) and the corre-
sponding predictive model (the parameters in the regression model, β) encrypted. For
prediction tasks, covariates are encrypted and sent to the server, where computations
take place (e.g., the computation of the regression model predictor, Xi•β) and are then
returned to the client for decryption (and potentially further transformation, as would
be the case for generalised linear models). Examples of these include logistic regression
(Bos et al., 2013) and hidden Markov models (Pathak et al., 2011)

Crucially, in all these current methods, existing algorithms are simply refactored to
run homomorphically rather than developing novel approaches to approximate otherwise
currently intractable statistical techniques.

3.2 Implementations

As will be clear from Section 2.3, many homomorphic schemes can be non-trivial to
implement. Some public implementations are releases of software which was written for
a specific paper, whilst there are a small number of libraries or packages enabling reuse.
Most libraries or packages commonly interfaces in low-level languages such as C/C++. A
very compact single C file library implementing Gentry (2010) is ‘libfhe’ (Minar, 2010).
This implementation is based on a binary scheme, but has routines to allow encryption
of integers by base-2 decomposing, encrypting each binary digit separately and then
implementing binary adder arithmetic (so that even addition will involve cipher text
multiplications). There is no bootstrapping implementation and at time of writing there
have been no apparent updates since 2010.

‘Scarab’ (Perl et al., 2011) is another low-level C library, implementing instead another
integer cipher text space scheme by Smart and Vercauteren (2010). This implementation
allows only encryption of a binary message, although as well as providing addition (XOR)
and multiplication (AND), there are full and half adders provided offering carry in and
carry out or just carry out, respectively. A bootstrapping routine is also provided. There
have not been additional updates in some time.

Another low level implementation, ‘HELib’ (Halevi and Shoup, 2014b), provides a
C++ library implementing Brakerski et al. (2012), one of the early second generation
of schemes (see Appendix A). It incorporates some very useful optimisations, including
the work of Smart and Vercauteren (2014), which enables single-instruction multiple-data
(SIMD) parallelism by packing multiple values in a single cipher text. This is under active
development at the time of writing and appears the most comprehensive implementation
of a modern scheme currently available. Details of the algorithms used are available in
preprint (Halevi and Shoup, 2014a).

Finally, there was a recent comparison of two schemes, Fan and Vercauteren (2012)
and Bos et al. (2013), in Lepoint and Naehrig (2014) which provided the C++ software
used (Lepoint, 2014). Although not in the explicit form of a library it could be possible
to transform this into a C++ library for the two schemes.

4 HomomorphicEncryption R package

For statistics researchers to be able to use homomorphic encryption techniques, an easy
to use yet high performance library in a high level language which is popular in the
community is necessary. An R language (R Core Team, 2014) package providing such an
implementation is a contribution of our work.
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The HomomorphicEncryption R package (Aslett, 2014) provides an easy to use inter-
face to begin developing and testing statistical methods in a homomorphic environment.
The package has been developed to be extensible, so that as new schemes are researched
by cryptographers they can be made available for use by statistics researchers with min-
imal additional effort. The package has a small number of generic functions for which
different cryptographic backends can be used. The underlying implementation is mostly
in high performance C and C++ (Eddelbuettel et al., 2011), with many of the operations
setup to utilise multi-core parallelism via multithreading (Allaire et al., 2014) without
requiring any end-user intervention.

The first generic cryptographic function is pars. The first argument to this function
designates which cryptographic backend to use and allows the user to override any of the
default parameters of that scheme (for example, d, q, t and σ of Section 2.3). Related to
this, there is the alternative method of specifying parameters via the function parsHelp.
This allows users to instead specify a desired minimal security level in bits and a minimal
depth of multiplications required, and then computes values for d, q, t and σ which will
satisfy these requirements with high probability, by automatically optimising established
bounds from the literature (Lepoint and Naehrig, 2014; Lindner and Peikert, 2011)

The second generic cryptographic function is keygen, whose sole argument is a pa-
rameter object as returned by pars or parsHelp. keygen then generates a list containing
public ($pk) and private ($sk) keys, along with any scheme dependent keys (such as
relinearisation keys in the case of Fan and Vercauteren (2012)), which correspond to the
homomorphic scheme designated by the parameter object. At this point, the parameter
object is absorbed into the keys so that it doesn’t need to be used for any other functions.

The third generic cryptographic function is enc. This requires simply the public
key (as returned in the $pk list element from keygen) and the integer message to be
encrypted. It then returns a cipher text encrypted under the scheme to which the public
key corresponds. Crucially, the ease of use begins to become very apparent here, with
enc overloaded to enable encryption of not just individual integers, but also vectors
and matrices of integers defined in R. The structure of the vectors and matrices are
preserved and the encryption process is fully multithreaded across all available CPU
cores automatically.

The final generic cryptographic function is dec. Similarly, this requires simply the pri-
vate key, as returned in the $sk list element from keygen, and the (scalar/vector/matrix)
cipher text to be decrypted. It then returns the original message. Note that the structure
of vector or matrix cipher texts is correctly preserved throughout.

The real simplicity becomes evident when manipulating the cipher texts. All the
standard arithmetic functions (+, -, *) work as expected, implementing for example the
cyclotomic polynomial ring algebra of the FandV scheme transparently. Moreover, vectors
can be formed in the usual R manner using c (or extracted from the diagonal of matrix
cipher texts with diag), element wise arithmetic can be performed on those vectors (with
automatic multithreaded parallelism) and there is support for all the standard vector
functions, such as length, sum, prod and %*% for inner products, just as one would
conventionally use with unencrypted vectors in R. Indeed, such functionality extends to
matrices, with formation of diagonal matrices via diag from cipher text vectors, element
wise arithmetic and full matrix multiplication using the usual %*% R operator (again,
automatically fully parallelised). Matrices also support the usual matrix functions (dim,
length, t, etc). The package automatically dispatches these operations to the correct
backend cryptographic routines to perform the corresponding cipher text space operations
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transparently, returning cipher text result objects which can be used in further operations
or decrypted.

The following is the simplest possible instructive example. Examining the contents of
k, c1, etc will show the encryption detail:

library(HomomorphicEncryption)

p <- pars("FandV")

k <- keygen(p)

c1 <- enc(k$pk, c(42, 34))

c2 <- enc(k$pk, c(7, 5))

cres1 <- c1 + c2

cres2 <- c1 * c2

cres1[1]

dec(k$sk, cres1)

dec(k$sk, cres2)

Note that indexing into vectors and matrices as provided by R via the usual []
notation is fully supported, including assignment.

We hope this provides a distinctly easy-to-use software implementation in arguably the
most popular high level language in use among data scientists today, including automatic
help for encryption scheme parameter selection to aid non-cryptographers. Moreover,
given the computational burden of homomorphic schemes, the transparent multithreaded
parallelism automatically across all CPU cores in all available scenarios (encryption,
decryption and arithmetic with vectors/matrices) enables focus to be on the subject
matter questions.

At present, the scheme of Fan and Vercauteren (2012) (described in Section 2.3) has
been implemented, making use of FLINT (Hart, 2010) for certain polynomial operations
and GMP (Granlund and the GMP development team, 2012) for high performance arbi-
trary precision arithmetic. Backends for further homomorphic encryption schemes may
be added in the future.

Table 1 provides indicative timings for common operations using the default param-
eters of the package (which match the default parameters suggested in Fan and Ver-
cauteren, 2012).

Table 1: Timings (in seconds; average of 100 repetitions) for oper-
ations on cipher texts using the HomomorphicEncryption package.
All timings performed on an Amazon EC2 c4.8xlarge instance for
reproducibility. S represents a scalar, V a vector of size 100 and M
a matrix of size 10× 10.

scalar operations vector operations matrix operations

S+S 0.003 V +V 0.58 M+M 0.87
S*S 0.084 V *V 1.59 M*M 8.49

V %*%V 1.59 M%*%M 10.21
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5 Conclusions

This technical report has provided a review of homomorphic encryption with a focus
on issues which are pertinent to statisticians and machine learners. It also introduces
the HomomorphicEncryption R package and demonstrates the ease of getting started
experimenting with homomorphic encryption.

The practical limitations of homomorphic encryption schemes means that existing
techniques cannot always be directly translated into a corresponding secure algorithm.
This presents an opportunity for the statistics and machine learning community to en-
gage with research in privacy preserving methods by developing new methods which are
tailored to homomorphic computation and which work within the constraints described
in Section 2.4, with the sister paper to this review (Aslett, Esperança and Holmes, 2015)
being an initial contribution in this direction.
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A Modern homomorphic schemes

The groundbreaking work by Gentry (2009) set the stage for the modern era of homomor-
phic schemes where both addition and multiplication to a (theoretically) arbitrary depth
are possible. In a nut shell, Gentry constructed a scheme based on ideal lattices over
a polynomial ring which could perform sufficient homomorphic operations to evaluate a
so-called ‘squashed’ version of its own decryption algorithm: thus, given an encrypted
version of a hint about the secret key, evaluating the decryption homomorphically results
in a ‘fresh’ cipher text where the noise level is reset.

This quickly spawned many other schemes which invoked these techniques. Two
conceptually much simpler schemes using the technique and based on large integer cipher
texts were developed in van Dijk et al. (2010) and Smart and Vercauteren (2010). Stehlé
and Steinfeld (2010) directly improved on Gentry (2009) making evaluation of operations
less complex. Brakerski and Vaikuntanathan (2011b) used the Gentry approach removing
some untested security assumptions which had been made. These works were in a sense
the ‘first generation’ of modern schemes.

Brakerski and Vaikuntanathan (2011a) triggered a second generation of schemes based
on the “learning with errors” (LWE) problem (Regev, 2009) which did not rely on the
poorly understood hardness assumptions of ideal lattices or ‘squashing’ of the decryption
circuit to achieve full homomorphism. Moreover, it ensured that the size of the public key
was independent of the depth of operations to be performed: implementations of Gentry’s
original scheme required upto 2.3 gigabyte public keys (Gentry and Halevi, 2011)! This
second generation of schemes includes Brakerski et al. (2012) which introduced ‘leveled’
schemes, where noise grows linearly; Brakerski (2012) which introduced scale-invariance
reducing the number of keys that must be stored; Fan and Vercauteren (2012) which
provided a practical scheme, porting scale invariance to the Brakerski et al. (2012) scheme
and setting it in a ring-LWE context (Lyubashevsky et al., 2010); Gentry et al. (2013)
which introduced a highly novel LWE approach where cipher texts are matrices and
operations follow standard matrix arithmetic; and Brakerski and Vaikuntanathan (2014)
where they focus on matching security levels of non-homomorphic schemes, among others.

B Ring Learning With Errors (LWE)

The ring LWE hardness result underlies the homomorphic encryption scheme reviewed in
Section 2.3. It is a ring based extension of the original LWE result due to Regev (2009).
For the interested reader this appendix provides a short simplified explanation of the
problem the security of the scheme relies upon. The notation here follows that of Section
2.3.

The original LWE problem requires reconstruction of a secret vector ~s = (s1, . . . , sn) ∈
Z
n
q , for some q ∈ Z, when only in possession of a collection of approximate random linear

equations. First, imagine forming the results of many linear equations, zj = 〈~aj, ~s〉, by
choosing uniformly random vectors ~aj ∼ Z

n
q . Then, given n realisations of {~zj,~aj} it is a

simple matter of solving a system of linear equations to recover ~s.

However, consider the approximate version of this problem: given a uniformly random
vector ~aj ∼ Z

n
q , form instead the perturbed inner products ~yj = 〈~aj , ~s〉 + ej where ej is

a scalar discrete random Gaussian draw. Then, given many realisations of {~zj ,~aj} the
objective is to solve 〈~aj, ~x〉 ≈ ~yj for ~x. For appropriate choices of the error this can be
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shown to be an exceptionally hard problem: certainly as hard as traditional worst-case
lattice problems which have been well studied.

Ring LWE (Lyubashevsky et al., 2010) ports the same results to the more complex
polynomial ring setting, but the formulation is essentially unchanged in that it is now
simply solution of a system of perturbed linear equations in an algebraic ring.

Notice that the public key in Section 2.3 is precisely the ring LWE problem: the public
key contains a masked version of the secret key, with the security of doing this based on
the difficulty of recovering it due to the ring LWE problem hardness.
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