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Abstract

We consider the problem of modelling the reliability of a network of subsystems where each subsystem
has redundancy and is repairable. The motivation for this work is large-scale telecommunications
networks.

The time to failure of the subsystem hardware is modeled by an appropriate Markov process and is
hence a phase-type distribution. The network structure defines a failure rule in terms of the states of
the subsystems, allowing computation by Monte Carlo simulation of the time to failure distribution
for the network. This is illustrated by some simple examples. When data on the reliability of the
subsystems are available, this can be incorporated via a Bayesian inference approach to modify the
prediction of network reliability.

1 Introduction

It is extremely common to find redundant subsystems in mission critical networks, where it is possible to perform
non-disruptive repairs in the event of covered failures. The fact that repairs can take place without failure means
that traditional failure rate distributions such as the Weibull and exponential can be a poor fit in such situations.
Moreover, they fail to reflect the inherent stochastic process underlying the repairable subsystem.

This situation has been successfully modelled using phase-type distributions (for example Neuts et al. (2000)).
However, there has been limited work in the literature seeking to model subsystem redundancy in the context of
the system and network in which it resides, as well as little emphasis on statistical inference. In particular, there
has not been extensive use of inferential techniques to learn about the underlying stochastic process that leads to
failure via various phases of failure and repair.

Looking at reliability theory more generally, there has been a lot of work using Bayesian networks to model the
dependencies present in systems (an overview is provided by Langseth and Portinale (2007)). Again, these have
traditionally used common failure time distributions such as the Weibull and exponential. This has been limiting
since the arcs in a Bayesian network are often used to represent ‘causality’, so there is no natural graph structure
to explicitly represent a repairable redundant subsystem.

This paper is concerned with embedding phase-type distributions — which offer a natural expression of redun-
dancy — into a Bayesian network. Thus, by effectively embedding an entire Markov process into a single node, it
is possible to model the whole system and its dependencies.

In particular, the stochastic process underlying the phase-type distribution is carefully constructed to have a
physical meaning, as opposed to the common practice of using general or Coxian phase-types simply as distribution
fitting tools. As a result, inference on the Bayesian network can lead to explicit inference on failure and repair rates
of the ‘hidden’ components of a redundant subsystem. The Bayesian approach, taken with mildly informative
priors, is particularly crucial here due to the heavy overparametrization and hence non-identifiability of general
phase-type distributions.

In Section 2 we review phase-type distributions and Bayesian networks describing their use in the context of
this paper; in Section 3 we demonstrate simulation of a very simple example system expressed as a Bayesian
network; in Section 4 we discuss inferential issues for the aforementioned model; in Section 5 we show some
preliminary results; and in Section 6 discuss future work.



2 Background

2.1 Phase-type Distributions
Consider a continuous-time Markov chain on a finite discrete state space E with n + 1 states, one of these states
being absorbing. With a possible reordering of states, the generator of the Markov chain can be expressed as:

T =
(

S s
0 0

)
In the context of modelling reliability of an N + K redundant subsystem where individual components have
exponentially distributed lifetimes, we may consider the first n states of the chain to represent the possible per-
mutations of 0, . . . ,K unrepaired failures. Then S = (Sij) expresses the transition rates from state i to state j
for i, j ∈ {1, . . . , n}: in other words, the transitions to additional non-service affecting failures or to individual
repairs. State n + 1, the absorbing state, encompasses all situations where there are more than K failures which
have not been repaired and thus the system is unavailable. Here s = (s1, . . . , sn)T is the vector of transition rates
from state i to the absorbing state.

Thus in a reliability context, this Markov process captures a redundant subsystem which can be repaired, and
of particular interest would be the distribution of the time to failure — that is, the time until the Markov process
enters state n+ 1.

Definition 1. A phase-type distribution (PHT) is the distribution of the time to entering the absorbing state of a
Markov process with generator T and vector of initial state probabilities π = (π1, . . . , πn).

The distribution and density can be expressed through the matrix-exponential as:

X ∼ PHT(π,T) =⇒
{
FX(x) = 1− π exp{xS}e
fX(x) = π exp{xS}s

where e is a vector of 1’s of the appropriate dimension and x is the time to absorption.
Continuous time Markov chains are covered in Grimmett and Stirzaker (2001). Phase-type distributions were

introduced in Neuts (1975) and an excellent survey of much of the theory is presented by Asmussen (2000).

2.2 Bayesian Networks
The primary motivation for setting up a model in terms of a Bayesian network is to make explicit the conditional
independencies so as to simplify the subsequent inference of unobserved parts of the model. This is achieved by
combining a directed acyclic graph whose nodes are the random variables in the model with conditional probability
distributions for each node. The parsimony is achieved because each conditional probability distribution need only
be defined conditional upon those nodes which comprise its parents in the graph. Thus,

P(X1 |X2, . . . , Xn) ≡ P(X1 |Pa(X1)) where Pa(X1) ⊂ {X2, . . . , Xn}

In the context of reliability, the most simple scenario may take the binary random variable for system availabil-
ity to have one parent for availability of each critical subsystem. Each of those subsystem nodes would then have
parents representing the priors of the parameters of the failure distributions, which could in turn have hyperpriors
to express adjustment due to external factors such as environment.

The general theory of Bayesian networks is treated in detail by Pearl (1988). A survey of Bayesian networks
as used by the reliability community and specifically contrasted with fault trees is presented by Langseth and
Portinale (2007). A recent example of their use is in Flood et al. (2009).

3 Simulation of Network Reliability

Consider first simulation of reliability data given a model constructed using the ideas presented above. To aid
simplicity of exposition, a small network of 5 nodes is simulated. Each node is considered to be a draw from a
population of units of the same type.
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Figure 1: The Bayesian network (DAG part) for a network node.

3.1 The Network Nodes
Each node (a router, say) is considered to have two critical subsystems: a dual (1+1) hot-swappable redundant
power supply (PSU) and a router backplane (BP). The lifetime of the redundant power supplies will be modelled
as being of phase-type and the backplane as exponential. The lifetime of the unit is then the minimum of the
lifetimes of the two subsystems.

This can be expressed in a Bayesian network as in Figure 1 with the following conditional probability distribu-
tions (with k = shape, θ = scale for gamma variates and λ = rate for exponential variates):

λp
f ∼ Gamma(k = 25, θ = 1000000−1)
λp

r ∼ Gamma(k = 300, θ = 10000−1)
λb

f ∼ Gamma(k = 20, θ = 12000000−1)

µp
f ∼ PHT(π = (1, 0, 0)T,T = Tp)
µb

f ∼ Exp(λ = λb
f )

X = min(µp
f , µ

b
f )

where

Tp =


−2λp

f − 2λp
f /99 λp

f λp
f 2λp

f /99
λp

r −λp
r − λ

p
f 0 λp

f

λp
r 0 −λp

r − λ
p
f λp

f

0 0 0 0


Note that the entry 2λp

f /99 was calculated to represent 1% uncovered failure rate. This follows from the fact that
given a generator G = (gij) for a continuous-time Markov chain (Grimmett and Stirzaker 2001),

gii := −
∑
j:i6=j

gij and P(Xn+1(t+ h) = j |Xn(t) = i and there is a transition after h) = −gij
gii

thus

P(j = 4 | i = 1, transition after h) =
y

2λp
f + y

= 0.01 =⇒ y =
2λp

f

99

3.2 The Network
The elementary example network being modelled for availability is as seen in Figure 2. Each node Xi is a realisa-
tion from the Bayesian network model setup in Section 3.1. The network as a whole is considered to be ‘available’
if there exists a path from the entry arrow on the left to the exit arrow on the right through nodes that are themselves
operational, and is otherwise considered to be in a ‘failed’ state.
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Figure 2: The network of nodes of the type outlined in Section 3.1.

Taking logical true to mean operational and logical false for failed, the availability of the whole network Y can
be expressed as the logical operation:

Y = X1 ∧ (X2 ∨X3) ∧ (X2 ∨X4) ∧X5

Under 100,000 repeated simulations performed in R (R Development Core Team 2009) this leads to the failure
time kernel density estimate illustrated in Figure 3, with frequency of the four failure conditions as set out in Table
1. The kernel density estimate used is a standard non-parametric method for empirically estimating the probability
density function of a random variable such that the estimate will be continuous and differentiable where this is true
of the kernel function.
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Figure 3: Empirical time to failure density for the network.

Table 1: Frequencies of failure states.

Failure Freq. Proportion
X1 38120 38.1%
X2 ∧X3 13326 13.3%
X2 ∧X4 10091 10.1%
X5 38463 38.5%

4 Bayesian Inference
The primary interest is inference on the parameters of the failure time distributions of nodes in a network. The
key complexity is introduced by conducting inference on the phase-type distributional part of the model and so it



is this aspect which commands the remainder of this paper, since in principle it is straight forward to use standard
techniques to perform inference on the Bayesian network once inference for the phase-type parts is available.

There has been effective theoretical work in the literature focusing on both frequentist (Asmussen et al. 1996)
and Bayesian (Bladt et al. 2003) inferential procedures in a general setting.

The work by Asmussen et al. (1996) provides an implementation of the EM-algorithm for phase-type distri-
butions and has seen very successful application in distribution fitting. However, general phase-type distributions
are heavily over-parametrised leading to significant problems with identifiability of parameters. Indeed, a general
phase-type of order p has p2 + p parameters but by a result in Section 2 of Asmussen et al. (1996), in fact the true
dimension of the parameterisation is 2p− 1. Thus there are many essentially equivalent parameter representations
for any phase-type, making the EM-algorithm highly sensitive to local minima.

Bladt et al. (2003) provided a fully Bayesian framework for inference by constructing priors which were
conjugate for the unobserved stochastic process. Because the ability to specify priors should enable injection of
sufficient information to ensure that the posterior estimates reflect physical reality, rather than just one of many
parameterisations for a distributional fit, this is the path chosen for this paper and is the work we seek to advance.

4.1 The Algorithm of Bladt et al.
The procedure developed in Bladt et al. (2003) is recapped in brief for the purpose of simplifying the elucidation
of the innovations to be presented later. The algorithm is a Metropolis-Hastings within Gibbs Markov chain Monte
Carlo sampler.

Consider observations y1, . . . , yN . The approach reconstructs a sample from the underlying stochastic process,
once for each observation via a Metropolis-Hastings step, with absorbing time equal to the observation time. Then
summary statistics of this chain are used to update the parameters in a Gibbs step.

4.1.1 Algorithm 1: Sampling from the underlying Markov chain.
For each observation yi from the phase-type there was an unobserved Markov chain (say ji) which traversed the
state space until absorption at precisely time yi. The chain ji which led to the realisation of yi was a sample from
the distribution of all possible paths which absorb at time yi: P(path · |Yi = yi)

Thus the goal is to sample a chain path ji = (ji(0), ji(t1), ji(t2), . . . , ji(yi)) where ji(yi) = n + 1 (the
absorbing state) from the space of all such possible paths. This is achieved by instead sampling from the easier to
simulate process where absorption occurs beyond time yi.

1. Generate ji = (ji(0), ji(t1), . . . , ji(tn)) for tn < yi from P(path · |Yi ≥ yi) by rejection sampling as the
current step. In other words, store the chain truncated to the state just prior to the observed absorption time.

2. Generate j′i = (j′i(0), j′i(t1), . . . , j
′
i(tn)) for tn < yi from P(path · |Yi ≥ yi) by rejection sampling as the

proposal step.

3. Generate U ∼ Unif([0, 1])

4. If U ≤ min(1, sji(y−i )/sj′i(y
−
i )), then replace ji with j′i (replace current with proposal). The acceptance ratio

is the ratio of the exit to absorption rates (from s) of the states the chains were in just prior to the observation
time.

5. Repeat from step 2 for a suitable burn-in time, then take only the last sample point and append ji(yi) = n+1
so that the chain absorbs at precisely yi. For sufficient iterations, this will be a draw from P(path · |Yi = yi).

Steps 1 and 2 are in fact easy to sample by simply using the generating matrix T of the continuous-time Markov
chain and simulating from initial state through to absorption, rejecting until absorption occurs after time yi. See
Bladt et al. (2003) for further details.

4.1.2 Algorithm 2: Gibbs sampler for the phase-type distribution
It was shown that given the full Markov process, a Dirichlet prior on π and a gamma prior for each of the elements
of S and s would provide conjugacy for the full conditionals of the posterior given the unobserved stochastic
process. Thus Gibbs sampling can proceed, with the prior specification as follows:

si ∼ Gamma(k = νi0, θ = 1/ζi)
Sij ∼ Gamma(k = νij , θ = 1/ζi)
π ∼ Dirichlet(β = (β1, . . . , βn))



Hence the full prior specification consists in selection of ν, ζ and β. In particular, note that the prior on all rates
out of a state i must share common scale parameter 1/ζi.

The algorithm then proceeds as follows:

1. Generate π, Sij(i 6= j) and si from the prior distribution, and set Sii = −si −
∑
j:i 6=j Sij

2. Use algorithm 1 to generate (j1, . . . , jn) where each ji is a sample Markov process with absorption time yi.

3. Calculate the combined statistics across all samples: b = {Bi, i = 1, . . . , p}, z = {Zi, i = 1, . . . , p},
N = {Nij , i, j = 1, . . . , p} where Bi is the number of times a process started in state i, Zi is the total time
the process spent in state i, and Nij is the total number of jumps i→ j.

4. Draw new parameter values from the conjugate full conditional distributions:

si ∼ Gamma(k = Ni0 + νi0, θ = 1/(ζi + zi))
Sij ∼ Gamma(k = Nij + νij , θ = 1/(ζi + zi))
π ∼ Dirichlet(β + b)

5. Repeat from step 2 for as many iterations as required.

See Bladt et al. (2003) for further details.

4.2 Revisions to the Algorithm
In the form presented above, the algorithm is excellent for performing general Bayesian inference on all parameters
of a phase-type distribution in the situation where the conjugate priors are appropriate for conveying prior belief.

However, there are three issues with regard to this application:

• Certain state transitions make no physical sense and so their entry must be fixed at zero in the generator of
the Markov chain. For example, from Section 3.1 a transition 2→ 3 is impossible since we cannot go from
PS1 failed and PS2 operating, straight to PS1 operating and PS2 failed, without first going through a repair
cycle for PS1.

• When performing inference on data where the phase-type distribution in question represents one of several
(> 1) critical subsystems of a system, there will be some instances of system failure which were not a result
of failure of the phase-type subsystem. However, the fact that the subsystem did not fail up to the time of
the system failing does contain information: we have a right-censored observation. This is the phenomenon
of competing risks and should also be taken into account (Prentice et al. 1978).

• Certain state transitions should (in an idealised sense) have identical parameters. For example, states 2→ 1
and 3 → 1 should have the same rate as there is no reason to believe a distributional difference in repairs
to different power supplies. Moreover, this reasonable assumption will allow a significant reduction in the
dimension of the parameter space.

Here we offer innovations to the algorithm of Bladt et al. (2003) so as to address such issues.
For the first, where entries should be constrained to zero, the parameter is fixed at zero when simulating step 2

and one does not draw new values in step 4. This solves the issue since we are effectively ceasing to consider this
entry of T as a parameter and exclude it from all inferential procedures.

The second issue of right-censored observations can also be dealt with quite elegantly with a small
change to the algorithm. The data will now consist of some actual and some censored observations: y =
{y1, . . . , ym, yc

m+1, . . . , y
c
n} where a superscript ‘c’ denotes right-censoring. Now when algorithm 1 is invoked by

algorithm 2 it should be used as normal for {y1, . . . , ym}, but for {yc
m+1, . . . , y

c
n} it should instead only perform

step 1 of algorithm 1 and return this value immediately as we have then sampled the underlying stochastic process
conditional upon survival to at least (yc

i )
n
i=m+1. This allows us to effectively incorporate the fact that the unit

survived to this time in the likelihood through the Metropolis-Hastings step.
The final issue requires examination of the posterior distribution which, when using the conjugate priors above

and with the full data (full Markov processes, simulated by Metropolis-Hastings here), can be written (Bladt et al.



2003):

p(π,T |x) ∝ φ(π,T)p(x |π,T)

=

 p∏
i=1

πβi−1
i

p∏
i=1

sνi0−1
i e−siζi

p∏
i=1

p∏
j=1
j 6=i

S
νij−1
ij e−Sijζi


 p∏
i=1

πBi
i

p∏
i=1

sNi0
i e−siZi

p∏
i=1

p∏
j=1
j 6=i

S
Nij

ij e−SijZi



=
p∏
i=1

πBi+βi−1
i

p∏
i=1

sNi0+νi0−1
i e−si(ζi+Zi)

p∏
i=1

p∏
j=1
j 6=i

S
Nij+νij−1
ij e−Sij(Zi+ζi)

Thus, where we constrain parameters in different parts of the generator S to be equal, the resultant full conditional
posteriors still keep the property of conjugacy. For example, if we want to constrain C : S12 = S13 = s2 = s3 =
λp

f (as for the model outlines in Section 3.1), then the full conditional posterior for λp
f becomes:

p(λp
f |x, C) ∝ (λp

f )N12+N13+N20+N30+ν−1eλ
p
f (2Z1+Z2+Z3+ζ)

∼ Gamma(k = N12 +N13 +N20 +N30 + ν, θ = 1/(2Z1 + Z2 + Z3 + ζ))

where ν and ζ were the hyperprior parameters for λp
f . This works likewise for other constraints for parameter

equality and reduces the dimensionality of the parameter space significantly.

5 Results

The theory from Section 4 was applied to perform the difficult part of the inference on a network of the type
illustrated in Section 2: inferring parameters of a phase-type distribution. The results here are on simulated data
for ‘toy example’ parameter values.

5.1 MCMC Runs
The modified algorithm 2 was run on simulated data for both uncensored and censored cases. Two chains of 20,000
iterations each were produced for each run.

Then, for each run autocorrelation plots were used to determine the level of thinning required (approximately
lag 20 in most cases).

After this, three tests of stationarity were applied:

• Gelman-Rubin Shrink Factor (Gelman and Rubin 1992): intuitively, if behaviour is good and stationarity
has been achieved, then all chains should behave as a single homogeneous group. Thus, the Gelman-Rubin
shrink factor effectively performs an ANOVA between chains. Brooks and Gelman (1998) indicate a shrink
factor of under 1.2 to show approximate convergence, with under 1.1 being a more stringent option.

• Heidelberger and Welch’s Convergence Diagnostic (Heidelberger and Welch 1983): which uses the Cramér-
von-Mises statistic to empirically estimate convergence to stationarity. The test is either pass/fail for a given
burn-in based on the critical values of the Cramér-von-Mises test statistic.

• The Geweke statistic (Geweke 1991): where two non-overlapping parts of a single chain are taken (a standard
in the literature is the first 10% and last 50% for technical reasons of power and independence) and a simple
difference of means test based on Geweke’s statistic is applied to the two samples. This produces a Z-score
which can be used to test if there is any significant difference.

All the above tests can be applied with progressively increasing burn-in sizes to gain insight into the necessary
burn-in to reach stationarity. Each run was independently subjected to these tests and the largest of the three
recommended burn-ins applied. This averaged 50-100 iterations after thinning (1000-2000 equivalent pre-thinning)
over the different runs.



5.2 Uncensored Phase-Type Inferential Results
First to be considered is the uncensored case. Data were simulated from a phase-type distribution with parameters:

π =

 1
0
0

 and S =

 −3.6 1.8 1.8
9.5 −11.3 0
9.5 0 −11.3


In other words, the distribution models a dual redundant system with failure rate (λf ) 1.8, repair rate (λr) 9.5 and
no uncovered failures. Priors were specified which meant these true values were away from the prior mode, the
full specification being:

λf ∼ Gamma(k = 24, θ = 1/16) and λr ∼ Gamma(k = 180, θ = 1/16)

Initially, 100 failure times were used to perform inference. This resulted in posterior plots shown in Figure 4,
which demonstrate very successful results for the failure rate and no change from the prior for the repair rate. This
strongly indicates that 100 data points is insufficient to convey information about the repair rate, probably due to
the fact so little time is spend in a degraded state. The 95% highest posterior density intervals are shown in Table 2
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Figure 4: Uncensored data posterior densities in solid line; prior in dashed line; true values at the vertical line.

Table 2: 95% highest posterior density intervals.

Parameter Lower Upper
Failure Rate 1.58 2.00
Repair Rate 9.60 12.67

5.3 Censored Phase-Type Inferential Results
Again, simulations were used to generate data upon which the inferential procedure could be tested using the
same true values for λf and λr as in the uncensored case. This phase-type was then put in competing risk with



an exponential random failure variate with rate ≈ 0.144, leading to around 25% of the data being right-censored.
Again, to facilitate direct comparability the same priors as the uncensored case were employed.

The resultant posterior plots can be seen in Figure 5. Interestingly, the censored case seemed to carry a little
more information about the repair time, though at the expense of less accurate modal estimation of the failure rate.
More data points would likely be required to observe an improvement in the tightness of these posterior plots.
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Figure 5: Censored data posterior densities in solid line; prior in dashed line; true values at the vertical line.

6 Conclusions & Future Work

Innovations to the algorithm of Bladt et al. (2003) have been presented, which extend this general purpose infer-
ential procedure into one that enables a significant reduction in parameter dimensionality. This, combined with
prior information, enables scientific meaning to be placed on the parameter values where the underlying Markov
process has a physical interpretation. Furthermore, the techniques developed enable the use of censored data.

The improved algorithm performed well when applied to a ‘toy example’, showing that the posterior distribu-
tion of the failure rate successfully captures information about the true parameter value. More data is necessary to
infer anything about repair rates due to the relatively short period of lifetime spend in a degraded state. Indeed,
initial work indicates that adding a significant number of observations starts to give accurate posterior estimates
for both parameters in the example presented.

There is significant scope for future work. Inference on the coverage rate for uncovered failures was not
presented here and sensible adjustments to the algorithm may be required to provide scientifically interpretable
results.

A particular aspect the authors intend to focus on is improvements to the speed of MCMC runs. At present, for
more realistic parameter values the computational overhead reaches unacceptable levels. In particular, algorithm 1
has been identified as the source of slowdown. Preliminary work has already commenced on modifications which
it is hoped will significantly reduce the dependance of the runtime on parameter values.

Finally, although it is now straightforward in principle to incorporate this inferential procedure into the
Bayesian network setup of Section 2, a deeper analysis of so doing is called for once speed is improved.



Appendix
Computational Notes
The code was written in R (R Development Core Team 2009) and steps 1 and 2 of algorithm 1 were written natively
in C to make computation times tractable. Additionally, step 2 (ie all of algorithm 1) was multi-threaded to provide
additional speedup, since computation of each ji is entirely independent. Finally, it is noted that for algorithm 2
it is not in fact necessary to store the entire chains, merely track b, z and N for each chain which can then be
summed over chains in step 3 of algorithm 2.

In the case of inference on 100 observations as presented in Section 5, a runtime of about 34 minutes produced
20,000 simulations on a dual core 2.4GHz Intel R© CoreTM 2 Duo processor.

Thus, for failure and repair rates which are not too many orders of magnitude different, MCMC run times are
reasonable. However, where the two parameters are large orders of magnitude apart, iterations of algorithm 2 take
an impracticably long time to execute.
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